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dynamically relevant conservation laws govemning failure and enesgy releasc/absorption at the failure
boundary and in the surrounding medium, so that in a fundamental sense these models are ad-hoc.
Further, examination of theoretical representations of the seismic radiation from earthquakes that employ
the divergence of changes in the stress within the medium as a source term in the equations of motion
(such as the "stress glut model”), are shown to be without a rational physical basis and to have no mcan-
ingful rejationship to the dynamics or kinematics of spontaneous failure.

ulx\l‘the present study we¢ develop an approach that incorporates the (nonlinear) conservation relations
on the failure surface, as well as those appropriate in the surrounding linear zone, to generate a Greens
function integral equation describing both the failure growth and the (interacting) seismic radiation field.
The method involves the explicit decomposition of total stress-displacement fields into dynamic and
equilibrium parts, with the latter dependent on time because of the growth of a new boundary correspond-
ing to the failure zone boundary within the prestressed medium; with this boundary growth necessitating
a time dependent readjustment of the prestress state to maintain equilibrium. It is shown that the time
changes in the equilibrium fields outside the failure zone give rise to an "equivalent force term” in the
equations of motion in the linear zone corresponding to the inertial effect of time dependent changes in
the equilibrium displacement field. Thus the "proper” equivalent force term in the equations of motion in
the linear zone is this inertial term and not the divergence of the stress field, either outside or inside the
failure zone. The Green'’s integral equation, arising from thc equations of motion and boundary condi-
tions (conservation relations) on the growing failure surface, show that there are three source effects that
mitigate the seismic radiation field, in particular a primary term resulting from the inertial effects involv-
ing the equilibrium displacement in the medium surrounding the failure zone (a volume relaxation effect)
plus secondary scattering effects from the failure surface and a final term involving energy absorption
along the failure boundary, which is required for its continucd growth. It is pointed out that this latter
term can result in severe damping of the radiation field and is thercfore of imporance for accurate
representations of the seismic radiation from such sources. Wc¢ also show that the Green’s integral equa-
tion representing the seismic radiation field can be expressed in equivalent forms, in particular in a form
that is similar to that obtained earlier using an initial value formulation (eg. Archambeau and Minster,
1978) and also in the form of a combined stress pulse-dislocation source distributed along the failure
boundary. One advantage of the present formulation is that it preciscly prescribes the time history and
spatial variability of the wave fields produced in terms of the failure zone growth rate, geometry and
material properties. It is also appropriate for the general case, that is for arbitrary prestress fields and
failure growth history and geometry. Therefore, a moment series expansion of the Green's integral
representation, based on the directly formulated integral equation, or any of its equivalents, will produce
moment coefficients that are analytically related to the fun’ v ;ial parameters of the failure process.
Thus the results of this study provide a basis for inference of o <iv. «7urce physics, as well as a physically
based predictive capability for earthquake sources.
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1. Introduction

The cssence of a kinematical moment tensor representation of canthquake seismic radiation (as
opposed to a dynamical representation) can be phrascd quite simply. In particular, the source is con-
sidered to be represcntable by an equivalent body force term in the cquations of motion, so that onc

assumes that
polu, -3ty = f,

can represent the source effect in the equation of motion, with f, an equivalent body force distributed over
a "source volume" and of a form which will give rise to a radiation field equivalent to that of the actual
source. It is also required, in effect, that the "source volume" be replaceable by an elastic region in which
the usual lincar Green’s function representation can be used. In this context a dislocation equivalent to
spontaneous failure in a stressed solid (that is failure rcsulting in an earthquake) can be viewed as a
choice of an equivalent body force that is distributed over a planar surface within the medium. (That is,
the equivalent body force has a delta function form with a magnitude that is usually taken to be propor-
tional to an imposed displacement offset across the singular "dislocation plane”.) Thus, the nonlincar
effects that may actually occur within the source volume are simulated by an equivalent force f acting
within the region or along its boundary. In this case the dynamic displacement field can be represented

by:

t
Uy (r,t) = 4—1"‘ Id% J fi(ro.to) Gi'(r Lirg.lo) drg
0

Ve
where G{'(rtiro.to) represents the Green'’s tensor describing elastic wave propagation in the medium and
V, is the cntire volume where f, is non-zero (See for example Morse and Feshbach, 1953).
An example of an expansion for u in terms of moments of f may be obtained by formally expanding

the Green's tensor in a Taylor's series in the source coordinates r, (e.g. Stump and Johnson, 1982), so

that:




1
Gl(r tirgte) = z [;— G- .L(r.uO,to)] M@ - x®
n

where summation is implied for the repeated coordinate indices 1;, - - - 1, and G, ..., is evaluated at ry=0

(the origin of the source coordinates), with

G [ J d Gm( . |
u‘...,‘st ox® xO [ rhrol) 1,

Using this expansion for G in the Green'’s function representation for u,, then gives*

Un(r,) = Z n—l, !Gﬁ,,_l_(r,t:o.to) My, ... (%) dig
n=1
where

My, () = _[ Xlso) Kx(,o)--xfo ) £ (routo) drg

Ve
is the (n + 1) th order moment tensor.

Generally the lowest order term (n = 1), corresponding to a simple point double couple or disloca-
tion, is used and in this case:

1

(T ) = f GL3(r 049 Mu(to) dio
0

Clearly, all of this is completely formal with no actual physical description of the source involved.
Further, these representations follow from the assumption that a simple distributed equivalent force, act-
ing in an clastic zone replacing the true physical source, can actually represent (be equivalent to) an earth-
quake source. That this is not necessarily so can be appreciated by reflecting on the distinct possibility

that the true equivalent force may depend explicitly on the dynamic displacement field itself or on its

*The n = 0 term in the expansion for U vanishes by the whservation of momentum when there are no extemal forces or
torqucs on the system.




space-time derivatives. In addition, in the Stump-Johnson moment expansion, it is assumed that the
series expansion for G;", and resulting moment scrics expansion for uy,, exist and do not diverge. While it
may seem intuitively plausible that the latter assumptions are valid, it is also likcly that expansions of this
type would be slowly convergent, and certainly extremely so for a complex carthquake of large dimen-

sions.

In a somewhat similar approach, Archambeau (1964, 1968) considcred the cxpansion of an
equivalent force representation in moments, except that, rather than formally expanding the Green’s func-
tion as a series, the equivalent force was expanded as a (vector) harmonic scrics and the Green'’s function
integral was evaluated as a moment series expansion. Whilc this approach has the likelihood of produc-
ing a more rapidly convergent moment series, than would be produced by the expansion of the Green’s
function, it is (as was pointced out in the original development) purely formal with no direct relationship to
the actual source physics.

Thercfore, aside from these mathematical considerations, the essential question to be addressed is:
What is the proper cquivalent force term in a moment expansion, and in particular is there an equivalent
force that can be related to the actual physical source. If an analytical relationship can be established,

then the relationship of moment tensor obscrvations to the physics of the source can be established.

As will be shown, the complete Green’s function representation of an earthquake source results in
an integral equation that can only approximately have the simple cquivalent force form. But cven assum-
ing the carlier formalism to be approximately valid and a useful representation for inversion, before the
formal inversion results can properly be interpreted it is still necessary to be able to relate the moment

tensor components to the scurce physics in a rigorous fashion.

In regard to the question of the physical significance of the moment tensor, Gilbert (1970) argucd on
intuitive grounds that the cquivalent body force cquivalent could be cxpressed in terms of the (static)

stress drop resulting from an earthquake in the form

fu=-0dT,
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where T, is the stress change (throughout the carth) accompanying the seismic event. In this case, the
second order moment tensor My, is just T,. Similarly, Backus and Mulcahy (1976a) attempted to provide
a basis for the choice of f,, and in so doing introduced the idea of a "stress glut". In terms of the stress

glut tensor, this equivalent force is
fk =- alrm

where I'y denotes the “stress glut”. For an earthquake scurce, Ty, is taken as the difference between the
true physical stress, Sy, and a "model stress". {,; with this latter stress function corresponding, within the
failure zone, to the spatial continuation of the linear stress from outside the nonlinear failure zone into
this zone. Hence, Iy, is the equivalent of a "stress drop” within the failure zone and, further, the second
ordcr moment tensor My, is equal to I in this case. However, I, by virtue of its definition, is zero in the
surrounding lincar zone, co that while Gilbert’s equivalent is non-zero everywhere, the stress glut

equivalent is non-zero only within the failure zone of an earthquake.

In this paper we will show that the moment tensor is actually fundamentally related to time changes
in the instantaneous equilibrium displacement ficld that occurs in the medium surrounding a failure zone,
and that an interpretation of the moment tensor can be obtained in terms of changes in this vector ficld.
Furthermore, we show that the changes in the equilibrium displacements can be related, explicitly, to
failure zone shape, growth rate and material rheological properties, as well as to the initial (tectonic)
stress in the medium. This relationship, as might be expected, is nonlincar in most of the source parame-

ters, so that inference of physical parameicrs from the moment tensor is a nonlincar inversion problem.

In order to develop our results with clarity in the context of current usage, it is necessary to examine
the previous moment tensor derivations and intcrpretations in some detail. Initially, we will focus our
discussion on the original dcrivation given by Gilbert (1970), and the critique of this formulation by
Backus and Mulcahy (1976a), since many current interpretations derive from these considerations. In this
regard, we will show that the moment tensor cannot be related to a "stress drop” in the manner described

by Gilbert, and that the inclusion of gravitational cffects, as described by Backus and Mulcahy in their

-4 -




critique of Gilbert's derivation, docs not correct the problem. In fact, the changes in Gilbert's formula-
tion that are advocated by Backus and Mulcahy will be shown to lecad to a null result; that is the source
term (and therefore the scismic radiation ficld) should vanish at all points and at all times in their formal
representation. Gilbert’s source representation, on the other hand, can be shown 10 only include the very

small seismic effects due to gravity and density changes accompanying an carthquake.

In the development that follows in the next section we will first show why Gilbent's phenomenolog-
ical moment tensor formulation is incorrect and why the argument involving inclusion of gravitational
effects, as advanced by Backus and Mulcahy, is similarly incorrect. We will also show that Backus and
Mulcahy’s moment tensor representation, including the ‘stress glut’ representation, doces not properly
represent the physics of a spontancous seismic source, such as an carthquake, nor docs it properly
represent an carthquake radiation ficld in an cquivalent scnse. We will then demonstrate that a basically
different approach is required in order to properly describe the physics of a spontaneous scismic source.
In particular, we will show how a spontaneous failure process is properly formulated dynamically and,

when so described, provides a non-trivial moment tensor that can be related to the physics of the source.

II. Gilbert’s "Phenomenological" Moment Tensor Representation

Gilbert’s (1970) original development of a moment tensor representation followed the essentially

intuitive approach that is still commonly evoked to modcl an earthquake; namely, it was assumed’

i) That the external body force term f in the cquations of motion:
pofu - ot =pf,
can be used to represent the (force) effects associated with an carthquake.
(i) That the initial state of the medium (at t = 0) is described by:
u (r0)=9du,(r0)=0
ms of motion for a discrete system of particles and passed to the limit of a continuum for his final

results. In this discussion continuum equations are used from the onset since use of the discrete system is ncither neces-
sary nor particularly useful.




(iii) That the earthquake may be adcquatcly represented, for the purposes of pedicting the normal

modc responsc of the planct, by a step function response; so in view of the first assumption:
fy(r,t) = F,(r) HQD
@iv) That ‘the body force caused by the stress drop T, is’:
F(r)=-9dT,
where the spatial stress drop is defined in terms of the stress after an earthquake, 1P, and the
stress before an earthquake, 1, as:
Tum)= £-10;5150
These assumptions appear cminently plausible at first sight. However, they lead directly to a con-

tradiction which arises from the fact that both 1’ and 1{P satisfy the equations of equilibrium. That is:

I’ =-pgPireVy.

1
[x®n J=0:reav, J

where the bracket notation applied 1o tin, on aV,, the boundary of V,, denotes the change in the traction

across the boundary. Likewisc:

8,1@=—pg£ﬁ;r€VJ

&)
[[tﬂ”nd] =0:redV,

wherc pg® and pgP represent the gravitational forces acting and where the boundary conditions express
continuity of tractions at (all) the medium boundarics. Here the field 1] is defined over the volume V,

consisting of the entire volume of the planct, with 9V, representing its boundaries, while t{? is defined

““In addition 1o the free surface of the planet, there are other boundaries within the eanh where the elastic propenties may
change discontinuously and which, therefore, must be accounted for as intemal boundaries in Vo and V1~ However, these
can be omiticd from explicit mention if we observe once and for all that the tractions are continuous at ali such boundaries
and that at solid-solid boundaries the displacement is continuous, while on fluid-solid or fluid-fluid boundaries only the
normal component of the velocity is continuous. In the present context these boundanes and the conditions on them do not
change (to first order) before and afier an eanhquake, so the samc conditions will always apply and are to be assumed
throughout.




over V, consisting of the “nicrior of the planet outside the failure zone of the carthquake, and having
boundarics denoted by aV,, which includes the (newly formed) failure zone boundary in addition to the

boundaries aV,, cxisting prior to the event.”

Inside the failure zone we have

AT =—phireV =V,0V,
3)

1,0 =1 sredv’

where 1, is any (residual) stress which may cxist withir the failurc zone after the carthquake, while tff? is
the final cquilibrium stress in the clastic zone surrounding the failurc zone and dV ~ denotes the failure
zonc boundary. Here the symbol ©denotes the sct theoretic difference. The regions V,, V, and V’ and

their boundarics are schematically illustrated in Figure 1.

It is important to emphasize the nccessity of taking cxplicit account of the existence of the failure
zone and to express the cquilibrium equations in each zone scparatcly, with the appropriate boundary con-
ditions serving to connect the stress ficlds within the non-lincar source region to those in the lincar region
surrounding it (i.c. the rest of the carth). This necessity arises from two tacts. First. the only change in
the boundaries wiihin the earth is the formation of a failure zone boundary and, while there may be many
other boundarics along which material discontinuitics occur and where boundary conditions apply, this is
the only boundary at which non-negligible changes occur during an carthquake. Second, and most criti-
cal for the ensuing discussion, the failure zone defines a region of non-lincar behavior during its forma-
tion, within which it is not possible to apply the usual lincar theory. As will be scen, part of the problem
with Gilbert’s representation arises from the fact that he does not account for the existence of the failure
zonc boundary and the associated boundary conditions and, in cffect, assumes lincarity cverywhere
throughout the planct at all times, including within the failurc zone. This particular problem also ariscs,
in . more direct fashion, in the equivalent source representation advocated by Backus and Mulcahy

(1976a,b) and will be discussed later.




In order to rclate the description of equilibrdum ficlds given in (1) through (3) to Gilbert's use of
cquilibrium ficlds defined on the interior of the planct, we observe that the region over which Gilben
defines the stress drop, in (iv), is denoted as V by him and corresponds to our region V, (i.e. the entire
planet). To properly define a stress drop T, over the entire interior of the planet it is necessary to define it

as:

Te=tP-1Pirev,

T, =t ~1,; reV'=V,0V, (4-2)

and to include the boundary conditions applicable on the failure zone boundary aV', in order to connect

the stress drop in V’ with that outside the failure zone, in V,. This condition is simply,
Tun=Tan: redV’ (4-b)

which equates the tractions at the boundary. Thus, while the tractions are continuous, the stress drop

components themselves may be discontinuous across oV .

Now we can relate this stress drop definition to Gilbert’s use of stress drop by simply setting the Ty,
defined in (iv) to be equal to one or the other of the expressions in (4-2), depending on whether the coor-
dinate point is in V, or V', This modification of Gilbert’s definition can be thought of as an extension of
his definition, required in order that the failure zone region is explicitly (and correctly) "covered” with the
correct boundary conditions includcd. We shall show below, however, that this is not the main difficulty
with Gilbert's forma! res:lts, even though a proper definition of the failure zone cquilibrium and boun-

dary conditior. »* -.:ndamcntal to the correct formulation of the problem.

In this regard. -2 note from (1) and (2) that while 1{? and t{P arc themselves different, because
they satisfy - different set of boundary conditions (one with the failure zone present, the other without it),

the divergences of these stresses can be related, since from (1) and (2):

a{n‘u" - t&‘"} = —{p g’ -p g{”}: rev




by simple subtraction of the cquations of equilibrium. As indicated, the relation applics over the region
exterior to the failure zone (V,). Now we scc {rom Gilbeit's assumption (iv) that the quantity in the

brackets is defined as the stress drop, and so the stress drop must satisfy the relation:
alez—[pgfl)—pg{nJ;reV, (5)

Here pg represents the new gravitational force ficld acting after the carthquake, whereas pgQ is the ficld
before the cvent. The difference in these force ficlds is due to the redistribution of mass due to the carth-
quake, resulting in changes in density and associated changes in the gravitational acceleration. Gilben
docs not dircctly concen himself with gravitational cffects. (He docs not neglect gravity effects as
claimed by Backus and Mulcahy (1976a), he simply asscris that the body force equivalent of an carth-
quake is -9, T, and never observes that (5) is actually truc.) However, if gravity cffects are, in fact,
neglected in comparison with cffects of tectonic origin, as is shown to be justificd in the Appendix 1,

then:
oTy=0;reV,. (6-a)

We also obscrve that the stress drop within the nen-lincar failure zonc is also cqual to the gravity

ficld change, that is:
Ty =~ [pgx‘“—p'gi] preV,
and when gravity changes are ignored relative to tectonic effects, then we also have
OTy=0;reV’ (6-b)

within the failure zone.

Therefore we sec from (6) that, to the approximation in which neglect of the gravitational forees is
appropriate, the divergence of the stress drop is zero everywhere, In terms of Gilbert's (cquivalent)
‘body force caused by the earthquake’, as defined in (iv), we have that this quantity is also zcro. That is,

we have:

.9,




F(r)=-9Ty=0:reV,,
and, ac well,
e ) =F)H@)=0;reV,,
in view of (6).

Therefore the body force term used by Gilbert to derive the moment tensor representation is, in fact,
zero (or at least negligible) and the result derived from the normal mode representation using this
equivalent force does not represent an earthquake displacement field. In particular, Gilbert finds that the
displacement ficld due to a body force term of the form fy(r,t) = F,(v) H(t), with H(t) a step function, can be

put in the form

u(r,t)=28(°’(r) IdVos(")(ro)-F(ro) .

n v

3 )

[ 1 - cos w,t exp(- ©,12Q,)
W,

where the s® arc the normal mode displacement cigenfunctions for the entire "unperturbed” planct; that is
the planct without the failure zone boundary present within it. Here s are the complex conjugates of the
modc functions, w, are the mode angular frequencies and Q, the associated dissipation function for each
mode. (For this result, the Q, are assumed to be much larger than unity so that dissipation is small.) This
expansion is formally corrcct if effects from the failure zone boundary arc neglected and if it is applicd in

the region V, (outside the nonlincar failure zonc).

However, insertion of — 9,T,, for F, in this rcpresentation, whether intuitively plausible or not, is ad
hoc and quite incorrect. In fact, as we have noted, if gravity cffects arc negligible relative to tectonic
cffects (which is in fact true), then the divergence of the stress drop vanishes and so docs the right side of
(7). Thercfore, Gilbert’s application of Gauss’ thcorem to the volume integral term involving the diver-
gence of the stress drop and subsequent approximations whicﬁ lead to the widely used result (e.g. Geller,
1976, McCowan and Dzicwonski, 1977; Dzicwonski and Gilbert, 1974; Gilben, 1973; Gilbent and

Dzicwonski, 1975; McCowan, 1976; Luh and Dzicwonski, 1976) :
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0,

is without proper foundation and the result is incorrect. (Here M, is the "moment tensor”, which in this
result equals the stress Ty, while e is the strain tensor associated with the complex conjugate displace-
ment cigenfunctions for the planet.) Basically, the crror ariscs from the fact that the divergence of the
stress drop is not a proper cquivalent body force for an cartiquake source, plausible ad hoc assertions to
the contrary. The fact that this equivalent force actually vanishes when gravity effccts are neglected is
simply indicative of the impropriety of thc assumption.

The expression in (8) is not, however, zero as would be expected. That is, since F, = — ;T vanishes
(to the approximation in which gravity changes arc neglected) and so causes (7) to give a null displace-
ment ficld result, one might certainly expect that any result derived from (7), such as (8), should also
vanish. This is not the case because, in deriving (8) from cquation (7), Gilbert omits the surface integral
term over the failure zone boundary so that (8) represents only part of the solution (7). The part neglected
(the surface integral term) exactly canccls the right side of (8), to give the (correct) null result or, if grav-
ity is not neglected, the displacement cffects duc to gravity ficld changes. That is, if we directly substi-

tute the divergence of the stress drop into Gilbert’s cquation (7), then we get:

1 - cos w,t exp(- w,12Q,)
w7

n(r) = D 59(r j [P & - p 671 57dVo { 9)
n v

since the divergence of the stress drop has the form
Ty = [P g - p g ')}

everywhere ‘n the planct, including inside the failurc zonc. Thus, when the divergence of the static stress
drop is uscd to represent the "cquivalent force” due a spontancous source like an carthquake, then the dis-

placcment predicted will be negligibly small or zero and not representative of the scismic radiation (icld
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produccd by the event.

Backus and Mulcahy (1976a) on the other hand argue that Gilbert’s results are in error preciscly
because of the neglect of gravity in defining a moment tensor. But this is not the rcason that the result is
in error, as was already indicated above. In particular, Gilbert does not neglect gravity since he simply
assumes that the divergence of the stress drop is the equivalent force to be associated with an earthquake
ang, once this is done, gravity cffects are actually implicitly included. In fact, as we have shown in equa-
tion (9), the true consequence of Gilbert’s assumption is that he actually should obtain only that part of
the displacement due to an earthquake that is associated with gravitational field changes. Further, as will
be directly demonstrated, the formulation suggested by Backus and Mulcahy gives a null result when

gravity is included in the way they advocate.

In particular, if the gravitational changes arc included, as suggested by Backus and Mulcahy (1976a,

p- 346), by dcfining a gravitational stress tensor (G;;) such that
p g =9G;,
where
G; = (8nG)™" (g.&,8; - 2g:8) »
then the equilibriuin cquations for the initial and final states, equations (1), (2) and (3), have the form:

al(rp + GS’] =0:;reV,
8,{1{%0@] =0;reV, . (10)

8,[1,;+G[;J =0;reV,0V,

The formal expressions given by Backus and Mulcahy (19764, p. 347) for the cquilibrium cquations are,

however (in our notation):*

*Backus and Mulcahy use the term "all space”, which is apparcntly meant to be taken literally. We shall confine our dis-
cussion somcwhat more 10 the point however, and take the libenty of replacing their "all space” by the entire intenior of the
carth. In our notation this is V.
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a{‘tg) + GS)J =0 v E VO

ax[ni“ + GP) =-WireVo

where ' represents ‘the equivalent volume distribution of body forces’ and is asserted to be Gilbert's

‘equivalent body force due to the source, corrected for gravitational effects’.

Here, since Backus and Mulcahy ignore the boundary conditions on the failure zone, as did Gilben,
and dcfinc the equilibrium cquation after the failure process over the entire interior of the planct, then we
must definc the stress tensor for the final equilibrium state to be 1’ when r e V, (inside the clastic zone of
the planct) and to be 1, when re V, OV, (inside the failure zonc), as was done earlicr in (4-a). Thus, if

we wrile Backus and Mulcahy’s cxpressions over the range of r for which they define it, but separatcly

forrinV, and .. rin V' (the failurc zone), we have:

al[t@+0,£ﬂ]=—y{; rev,

Aln+Gi] =i reV’
However, comparing these directly with the required equilibrium cquations given in (10) shows that:

wW=0;reVv,

‘Y:EO;I'£V,.

That is, as must be true, equilibrium requires y) to vanish everywhere, including within the failure zonc

V'. Therefore it is clear that:
W=0;reVy=V,®V’

so that this body force cquivalent is, in fact, identically zero in both V, and V' =V,0V, (that is,
throughout the planct including the region within the failure zonc). Thus, it contributcs preciscly nothing

to thce radiation ficld from an carthquake for essentially the samc rcason that Gilbert's stress drop
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equivalent force gives a null result when gravity is neglected in his formulation. Thus, use of the diver-
gence of changes in the equilibrium stress-gravity field as the driving force for a spontaneous source will
necessarily give a null result, since the mathematical expression for the existence of equilibrium is pre-

cisely that this particular force vanish.

As a consequence of thesc results, Backus and Mulcahy’s definition of an extended moment tensor

density as
My = - 1) + GP -G
and subsequent arguments about the size of the gravitational term (GP - G) relative to the stress drop
term (1P - 1) are moot, since
oMy=-%=0
in any case. Thus, since the divergence of M,, is the actual source term, we see that this "source term”
must necessarily vanish, whatever the magnitudes of the stress drop and gravity ficld changes.

Backus and Mulcahy also define the boundary conditions applicable to the equilibrium states before

and aftcr the carthquake, and state them as (in our notation):

n,[t,f) + Gﬁ’]j= 0; on gV

+
n,[‘t,(f’+G,§P]_ =~y ; on dV

where @V denotes the outer boundary of the planct (surface of the earth), since V is uscd by them to
dcnote the whole interior region of the carth. Here jump notation is uscd, so the plus and minus signs on
the brackets denote the difference in the bracketed quantity across the boundary aV, when approached in
the limit from opposite sides. As noted carlicr they ignore the failure zone boundary condition, since aV
(which is equivalent to our boundary dV,) is the surface of the carth. They introduce the surface source
tcrm 7y, to include the case where the failure zonc intersects the surface of the earth, in which case it is

claimed that y{ will give the proper equivalent force term along this intersection on gV.
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However, inclusion of this "surface distributed” source term, contributes nothing of substance to
their formulation, and it still gives a null result. That is, consider the casc when the failure zone doces not
happen to intersect the earth’s surface. Then =0 by definition. Clearly then all possible cquivalent
source terms vanish, that is &' =0 and ¥ = 0, and Backus and Mulcahy’s formulation gives a null result.
Thus, it predicts no displacement ficld resulting from the cvent whatsoever, because all source terms van-
ish, and this is obviously incorrect. Since this rcformulation of Gilbert’s representation is incorrect for all
carthquakes for which the failure zonc docs not interscct the carth’s surface, it is reasonable to conclude,
without going through a dctailed cvaluation of the spccial case of a failure zone intersccting the free sur-
face of the carth, that the reformulation is also incorrect in general. (In fact, since ¥ = 0 everywhere in V,

then it can be shown that y§ must also be zero on dV.)

At this point we have rather thoroughly explored the so-called stress drop moment tensor represen-
lation of Gilbert and the ‘cxtended moment tensor’ rcpresentation of Backus and Mulcahy, which is
intended to correct Gilbert’s formulation. However, we have shown both to be misdirected and to give
incorrcct representations of an earthquake source radiation ficld. Indeed both give (essentially) null
results when the required equilibrium equations are taken into account. Thus, neither of these formula-
tions account for the physics of a spontancous failure source, nor do they kinematically or phenomenolog-

ically rcpresent such a source.

IT1. The Backus-Muicahy Stress Glut Formulation

The main point of the work by Backus and Mulcahy (1976a,b) is not the reformulation of Gilbert's
stress drop cquivalent, but the formulation of a comprehensive phenomenological moment tensor
rcpresentation for scismic sources in general and carthquake sources in particular. It is thercfore
appropriatc to comment upon the basis of their representation since we intend to generate a type of
moment tensor representation in a following scction, but from quite a different point of view. Further,

their results are very similar to Gilbert's and are similarly incorrect.
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The cssence of Backus and Mulcahy’s approach (Backus and Mulcahy, 1976a; p. 342-346) is bascd

on the following considcrations (in their notation):

@) The exact equations of motion and gravity for the earth are

Pa=9S;-pdy+finV
n;S; = ondV
V2y = 4nrGp , everywhere
y and 0,y continuous on 9V

y — 0, at infinity

where V is the (cntire) volume of the carth, 9V its surface and {7, €} arc externally applicd body
and surface forces respectively. Here y is the gravitational potential at any point, so g; = oy is
the gravitational acceleration. Finally, S; arc the components of the *true physical stress’ in the

carth and a; is the particle acceleration.
@ii) A ‘Mathematical model siress’ {;; may be defined as:
Cij = Ej1 9,8
where E;, is the ordinary elastic tensor, or as:
Gy =S5 - 5.9 S$ + Fiidysy

when prestress Si‘,-’ and gravity arc taken into account.* Here s, is the (seismic) displacement in
the elastic region of the carth. In addition, Fyy, is the clastic tensor corrected for the presence of

prestress, so that:*

*The tenm Skaksi? is aiways small relative to the other icrms in Cij in scismological applications, and can always be
neglected.

Since rcal stresses in the canth are orders of magnitude less than the magnitudes of the elastic constants appearing in
Eijkl- then it is justified to take Fijk] = Eu'kl in most scismological applications and, in particular, in this one.
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(iib)

Fp=Eg+ 1/2[8”8,?, ~ 8,8, + 8,50 — 8,59 +8,Sy - a,ks,?)
The model stress can be calculated from the truc displacement, s, by virtue of its definition and,
with the introduction of the ‘model stress’ in the cquations of motion (which can be achicved
by simply adding the divergence of this ‘model” stress ficld to both sides of the equation of
motion in (i)), onc obtains equations of motion expresscd in terms of the model stress plus an
cxtra ‘source term’, which is used by Backus and Mulcahy as the "cquivalent driving function”
or "cquivalent source function” for a spontancous rclcasc of energy corresponding to an carth-

quake. In particular, the equations of motion become, from (i):
p aj + a,Cu = alcu + a,Su - p a,\l/ + fjv N in V,

when the divergence of the model stress is (formally) added to both sides of the equation of

motion in (i). This equation can also be writicn as:
pa;=0;~poy+f'+y ,inV,
with,
Y; =9, -9;

where v is viewed (by Backus and Mulcahy) as an cquivalent source term arising from the
introduction of the model stress {;. Further, the boundary condition on oV then becomes, in

terms of the modcl stress:
nG,=+y ,on aVv
where
¥ =ng;-nS;,on oV

with y; considered to be (by Backus and Mulcahy) a boundary source term, on 9V, at the surface

of the planet.
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(iv)

v)

A moment tensor density M;; is defined in V such that

8iMU=—'YJ". in V,

n; MU = ‘Yj’ , on aV.

In addition, the “stress glut" T; is defined to be the difference between the model stress {; and

the true physical stress S;;, so:
Ty= G- S; -

Backus and Mulcahy asscrt that ‘evidently the physical source region is precisely the region
where the stress glut is non-zero’ This statement therefore fixes the choice for the model stress
to be the (essentially) elastic stress outside the failure zone, which is identical to their ‘truc

physical stress’ S; in the elastic zone.

The cquations of motion and gravity, given in (i) above, are lincarized throughout the volume
V (the entire planet including the failurc zone volume) and a relative model stress ¢ is intro-

duced such that:
Gij= Si(j) t C.}
where S is the prestress in V. The equations of motion and gravity are then expressed as*:
p®aZs, =ali - p° o' —p' ol + Y+ inV,
06+ AWsSY - Gus) 8] =17+ 37 on V.,
p' = —3,(p°s,) , inside and outside of V,

Vhy! = 4nrGp' , inside and outside of V,

*As noted eardier in (ii), the various terms in the boundary conditions, suress tensor q and elastic tensor Fl , involving
the prestress Sij and derivatives of it, are small in the clastic zone and ordinarily are neglecied. They could be large in the
non-linear zone, but these linearized equations are not valid in this zone in any case.
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[‘4’1}_ =0 and “l[ak\lfl}j =4nGp’ns, ,on AV,
y' — 0 , at infinity,

Cul' = SkakSS + Fl}k;aksl R in V.
In addition, the tnitial conditions

5,=0,5,=0,in Vatt=0,

arc uscd.
A formal cigenfunction expansion, using thc normal modes of the carth, is then used to ¢xpress a

solution of thesc lincar cquations as:

s (60 = i‘ A 1)

with

t
Ay = @) j dt sinay(t - 1) J‘y,' gV dv + J. v i da + Jf;’ aav + J fra’" da
0 v A% v v

where the integration is over the entire volume V and outer surface 9V of the planct and u arc the spa-

tial eigenfunctions for the planet, with G denoting the complex conjugate.”

The Backus and Mulcahy result for an carthquake source, where no external body forces are applicd

and the ’source zone’ does not intersect the carth’s surface 9V, is simply

s =Y, 7»1— jdt sin @yt - 1) J’(a,rg) 5 dV| 1) (11)
v=l ¥ |0 2

Pl

*Both Gilbert (1970) and Backus and Mulcahy (1976a) cite completeness of the modal eigenfunction set as the basis for
their representations of the seismic field from an earthquake. But since they completely omut the boundary condition at the
failure zonc. they end up omitting integral terms in A, (1), the "excitation function”, that represent scatiering from the
failurc zonc boundary, among other effects. (Such integral terms are explicitly considered in later scctions of this paper and
are shown 10 arisc quite naturally when a proper Green's function integral representation is used to describe the scismic ra-
diation effccts associated with a spontancous failure process - that is an carthquake.) Further, and most important, these au-
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in tcrms of the ‘stress-glut’. Here the spatial integration is only over the ‘source region’, that is V' the
failurc zone, and the ‘model stress’ is the stress in the linear region. (If the ‘source region’ intersects the

frce surface dV, then their result would also include the surface integral over dV involving ¥ =nI", )

The logical development descnbed in (i) through (v) is not, however, a proper one and the ‘stress
glu’ and moment tensor represcntations involving volume integration over the failure zone are, conse-

quently, incorrect.

The precisc nature of the problem with their approach can be scen most clearly by considering the
failure zonc, and its associatcd boundary, explicitly in the formulation. We employ the notation uscd car-
licr and indicated in Figure 1. Appropriate cquations of motion in the scparate regions V* (the nonlinear

failure zone) and V, (the lincar zone surrounding the failure zone) are

df[.. . .
a[pvi]%,sfpg, yTev

12
MEARRES 3,5.5” =pg’ i rev, (12

’

with the tractions, S;n, and S{"n;, 1nd velocity ficlds, v’ and v\, in V" and V, being related by boundary

yy )
cquations cxpressing conscrvation of momentum, mass and cnergy across 9V ', the failure zone boundary.

On the other hand we sce from (i) above that Backus and Mulcahy write the equations of motion

throughout the planet in the form
pa,-dS,=pg (13)

with a; the acceleravion. (Applicd external ferces are not relevant and are omitted throughout the remain-
ing discussion.) This equation can be formally related to those in V' and V, by simply letting the equation
take the form of one or the other of the cquations in (12), depending on whether ris in V or V,. Since
Backus and Mulcahy use the stress in the lincar zone, S, as their model stress (which, in fact, is the only

choice) then, as in (iii) above, this gives for their cquation (13):
thors conscquently ignore the essential nonlinear properucs of the fadure zone and integrate through this region, thereby

summing (physical or "true”) siress changes and gravity field changes from within this nonlinear zone as if they were linear
cffccts which superpose linearly and are propagated lincarly within this zone.
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pa-9S"=pg +v (14)
with
Y:V = aj(slj - SISI))

Now in terms of the equations given in (12) for the lincar and non-lincar regions, this referencing to S
q g c ‘: U

simply gives:
d (. o |
-d_l (pViJ_aJSig”:pg‘-'-a-‘LSiJ—Slgl)l : I’EV]

15)
pov?-38M=p g rev, (

The set of equations in (15) is the explicit equivalent of the equation (14), which is that used by Backus

and Mulcahy.

Buckus and Mulcahy then define the stress difference S},"—S,}, appecaring in (15), to be the ‘stress
glut’ ;. Next, as described in (v) above, they linearize the cquations of motion everywhere in V, the
interior of the planet, so that in (14) they in cffect replace pa; by p o2s,. However, as we see from (15),
this requircs the same approximation to be carried out in the nonlincar region V', That is, their lincariza-

tion of cquation (14) throughout the planct mcans that they lincarize the first of the equations in (15)

. . ds;
within the non-linear zone. But obviously the acccleration term di[p vi] = Edt- [ —:‘T] cannot ordinarily

be approximated by p'd’s; in such a region, since transport tcrms, which may be large compared 10 p9.2s;,

arc ncglected *. However, cven if such an approximation is made for this inert! 1 term the result is:
pols - 98" =pg + 3,{51} - Saﬁ”} ;rev. (16)

But Backus and Mulcahy usc the <ame displacement function s; everywhere throughout the planet. That
is, they cffectively replace the inertial term p'd%s; in (16) by p,a2s!", which corresponds to the analytic

continuation of the lincar (ele-tic) acceleration ficld into the nonlinear failure zone. Therefore, Backus

*Transport terms are those ansing from the last term in the identity: d/dU (pv) = d, (pv) + v-V(pv). Thus wheu the
total denvati.¢in the identity is approximated by the partial denvative, then this requires neglect of teius like \"V(p\').




and Mulcahy use a fully lincarized cquation in the failure zone, in particular:
pi10Zs -8V =p,gfV + a,-(si',- - SS”) ireV’ 17

Thus, these authors not only implicitly lincarize the incrtial term in equation (15), but they also
replace the nonlincar displacement s, with the analytic continuation of the lincar displacement s from
outside the failure zone into this zone. Further, they similarly replace p  and g/ by p, and g, again by
implicit continuation. Viewed in temmas of the validity of such a procedure, even as the crudest of approx-
imations, it scems clcar that it has no physical or logical basis. Certainly if fully nonlincar problems
could be solved by introducing a source term which incorporated a part of the nonlinear equation (in this
case the nonlinear stress term), with the remainder of the equation lincarized so that a linear Green's func-
tion solution could be obtained, then we would have at our disposal a method that could solve any non-
linear problem. There is no question that this is not the case, neither in ger;eral nor in the present prob-

Iem.

In fact, if the procedure employcd by Backus and Mulcahy is carried to its correct logical conclu-
sion, then the differences between the nonlinear incrtial and gravitational terms in V' and the analytic
continuation of the comparable lincar terms from outside the failure zone into V', should be included in
the source factor. That is, by the same logic uscd to introduce the stress difference term (the "stress glut”)
in the cquations of motion in V', one can form from (15) (by adding and subtracting the analytically con-

tinucd incrtial and gravity terms p,0¢ s and p,g{") the equation:
d (.2 .. . \ .
P07 sV + [E{ [P Vi] - PlagS‘(])} - 3135” =pig + [P 8 - Plgim] + a)‘[su' - S'SUJ ireV

This is perfectly rigorous and no approximations are involved, as opposed to the Backus-Mulcahy resuit.
Now the extra factors appearing, in addition to the "stress glut” term, are the two difference terms in
brackcts. These can, following the rcasoning of Backus and Mulcahy, be considered as (unknown)
"source” terms and, to cmphasizc this interpretation, can be wrilten in combination with the stress glut

term as a "source” of the lincar clasuc ficld s©V. That is, the previous equation can be rearranged as:
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d . . . .
Py &2s{ - 9; 85" =p, g +{ p1 375" - o e v)+pg -p )+ d; (S, - Sﬁl))} . reVY

Further, one can combine this result with the second cquation in (15) to obtain a result applicable in "all
space”, that is for r ¢ V ®V,. In particular, onc has the formal result:

P alzsi(])—aj S§])=plgl(])+Y\ :I'EV’@ vl

where
d - o . .
Yx ={ {plalz Si(l) - E(p Vx)} + [p gi - plgl(l)] + aJ(SU - Slgl))} re A%

Yy=0 ;reV,

This is essentially the same kind of result as that obtained by Backus and Mulcahy, but includes the two

cxtra factors in the source term v, that were neglected by them.

At this point on¢ might be tempted 1o conclude, since this is rigorous with nothing neglected, that
the result constitutes a very similar but somewhat more "precise” representation of the "cquivalent
source” term. However, while it 1s true that the equation is, in fact, the correct conscquence of the pro-
cedure uscd by Backus and Mulcahy, it by no means provides a representation of the equivalent source
duc to spontancous failure (an carthquake) or any other kind of source. This is casy to see, since it is only

necessary to note from the first of the cquations in (15) that:
L ov)-a8;=p'g ireV’
di p 1 S R p g

which only expresses conservation of momentum in V. But if this equality must be satisficd, which of
coursc it must, then several of the terms in the expression for y, must cancel. In particular, using this

cquation we have that y, must always (identically) reduce to:

Y ={9183s,“’ ~ 98§ - plg,‘”} ireV’

Y,=U reV,

If this is now rc-inscried into the "equation of motion in all space”, we have:
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P13’ - 98{" = p,gV +{an‘2si(]) - 98§ - p.g.‘“} reV’

p.asM - 38 =pig® irev,

While these equations are exact, the first is nothing but a trivial identity and the second is the regu-
lar cquation of motion in the elastic medium outside the source region. Thus, the consequence of the
approach uscd by Backus and Mulcahy, when carried out properly, is a triviality. However, since they
actually neglect terms of the same order as the "stress glut” term they retain, they do not recognize the cir-
cular nature of their procedure. In any case, it is clearly safe to conclude that the formal mathematical

basis for their representation is erroncous.

IV. Consequences of the Stress Glut Phenomenological Representation

Aside from the previous observations conceming the foundations of the stress glut representation,

there are sceveral conscquences of this formulation that indicate its inappropriate nature.

As a first example, consider the limiting form of the stress glut function as time tends to infinity

(the static limit). In this casc, with Y =9I,

lim y" = lim [a,.s ,] —lim [a S~(”] ={p’gi’ -0 rev’
oo L tmee LY e L 4TH O;reVv,

where p’, cic., represent final static values of density, ctc. Here we have simply used the fact that the
static stresses must satisfy equilibrium cquations. Thercfore we observe that, like Gilbent’s representa-
tion, this source term only represents gravity field changes in the long time, or low frequency, limit.
However, while Gilbert's result represented earthquake induced gravity changes in the entire planct, the
result given by Backus and Mulcahy represents, in the low {requency limit, only the changes within the
failurc zonc. But, as previously obscrved, the total of all gravity change cffects are at lcast several orders

smaller than tectonic effects and the cffect of those within the failure zone alone would be considerably

less than those to be obtained from Gilbert's result.




Morc cxplicilly, if we evaluate the displacement ficld due to the “stress glut”, as given by Backus
and Mulcahy in equation (11), taking the stress functions involved in the stress glut tensor to be at least
approximatcly separable in space and time, then we get:

1

o0 uv
sPxy =3 — j P'g;-pig) v’ av Jsin o,(t-1f(T)dt
v=1 @, v 0

where {(1) denntes a time function characterizing the temporal varation ¢f both the stresses S,',- and S, in
- the definition of the stress glut. Thus, no matter what the form of the time variation of the stress glut fac-
tor, the magnitude of the predicted displacement ficld is determined by the inner product of the gravity
ficld changes with the elasuc eigenfunctions for the carth taken over the failure zone. As with Gilbert's
result, with wnich it differs only in that the volumie integration is over the failure zone rather than the
entire volume of the carth, the predicted displacement ficld from this representation will be many orders

of magnitude lcss than that actually associated with earthquakes.

The use of the stress glut formulation in the context of inclusion theory (e.g. Eshelby, 1957), affords
another cxample of a clearly incorrect prediction for the clastic wave radiaiion. Here the problem, as con-
sidercd by Backus and Mulcahy, involves the creation of a volume inclusion within a stressed medium
where the material within the inclusion is viewed as transforming to a new physical state, such as from a
solid to a fluid *. A transformatior of this sort must result in the radiation of elastic waves, since the
stress outside the inclusion must dynamically adjust to the presence of the new material. In treating this

problem Backus and Mulcahy usc the expression
ru = EUUC\S
for the stress glut, where E,, is taken 1o be the clastic tensor throughout the inclusion after transformation

and ¢, is the so-called "stress-free strain”, which is precisely the strain that would occur in the inclusion if

it were allowed to undergo the transformation unconstrained by the surrounding matrix (i.¢., when the

+ The ume vaniation for this transformation is unspecificd in the problem.




inclusion boundary is a frec surface).

However, for the transformations described by the Eshelby inclusion theory, Ej, must be a constant
(Eshclby, 1957). Further ¢f is by definition an equilibrium field. Conscquently, the equivalent volume

force vector associated with this stress glut vanishes. That is:

v )

)

since the clastic tensor is constant in the inclusion and e[ is an equilibrium strain ficld by construction.
Therefore this stress glut representation gives a null result for this problem and this obviously cannot be

correct.

It is also easy to see that a stress glut formulation does not describe the physical manifestations of
phase transitions. In particular, consider the transition to involve sudden melting to form an inclusion
within a solid matrix that is initially under a pure shear prestress. Suppose the melting is such that an

ideal fluid is produced, so that the shear modulus is zero. Then E;y, reduccs to a form such that
rlj = }“Si)cka

where A is the Lamé constant for the fluid and ¢ is the volume dilation of the fluid when the boundary
stresses due to the surrounding matrix are removed. From the form of the stress glut it is evident that it
corresponds to a pure pressurc, with no shear stress components. Thus, we can conclude that this source
can never produce a correct result, since not only docs the divergence of the quantity T’ vanish but the
only radiation ficld that could possibly be produced by such a source term would be a purc compressional
wavc ficld since only ¢} is present and we know that shear waves must be produced because the initial
ficld in the surrounding matrix was purc shcar and it must change drastically after the transformation.
(Such a change can only be accompliched by the radiation of shear waves, which result in a relaxation of
the shear stresscs in the vicinity of the fluid inclusion.) Therefore, aside from the carlier fundamental con-
sidcrations, even a rather cursory examination of these special cases shows that the stress glut source

represcntation fails to describe the basic propertics of the clastic wave radiation to be expected.
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V. Dynamical Representation of Spontaneous Failure in a Stressed Medium: The "Time Depen-

dent Equilibrium" Method

In ordcr to display the proper “cquivalent force” term for a spontancous scismic source like an carth-
quake, which derives energy for its formation from the medium itsclf and simultancously relcases stored
encrgy from the medium, as evidenced by the scismic wavces radiated from the event, it is necessary 10
carcfully consider the nature of cquilibrium in the mcdium during formation of a failure zone. In doing
so we obscrve from the onsct that the conditions for equilibrium are continually changing with time as the
failurc zonc forms and cxpands. This follows from the force balance requircments themselves and, in
particular, from the fact that equilibrium depends upon continuity conditions at all the boundarics of the
mcdium. Therefore since failure produccs a boundary within the medium that changes dimensions with
time, then the cquilibrium stress must also change paramctrically with time because of the changing

boundary conditions applying to the intemal stress ficlds.

More quantitatively these statements rcgarding cquilibrium changes are cxpressed by the rela-

tions *:

ol =-p®g? ir e Vi(

(18)
[«Pall=0:r,e v,

where we use a superscript (¢) to explicitly label the variables as equilibrium ficlds. Further, we choose
to explicitly label the coordinates as r, and t,, denoting "source spatial coordinates” and a "source time
coordinate”, respectively. These equations arc entircly analogous to thosc of cquation (2), except that we
have taken explicit note of the fact that the volume external to the {ailure zone, V, as shown in Figurc (1),
and the surface of this volume, dV,, are both parametrically dependent on the time variable t,. Thus the
equations in (18) cxpress the conditions for equilibrium in the clastic region and since V() and oV, (1)

depend on time, then the solution of these cquations will yield stress, density and gravity ficlds that arc

*As hefore, the double bracket notation appearing in (18) is used to denotc the jump in the enclosed quantity across the
boundary.
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functions of both r, and t,. This dependence will occasionally be explicitly displayed, for example by
writing the stress tf as t{(r,.t,) and similarly for the other ficld variables. Likewise, the cquations

specifying equilibrium inside the failure zone are

205 = g r, € V')

(19)
[rn]=0:re aviy J

where V' is the failure zone volume and oV’ its surface, as shown Figure (1). This equation expresses the
same equilibrium relationships as were expressed by equation (3), but here again we have been more
cxplicit in indicating the parametric dependence of the fields on time through the linkage with the time

dependent volume and surface boundary of the failure zone.

Of coursc it is not usual to speak of an equilibrium ficld as depending on time and it appears at first
sight to be a contradiction in terms. However there is really no contradiction, since the dependence is
parametric; that is thesc fields are the equilibrium ficlds that would exist if the failure zone boundary were
of the size and shape specified at a particular time t,. Thus, we are mercly asking what the equilibrium
ficlds would be if the failurc zone were "frozen”, for all time, at a size and shape appropriate to a particu-
lar time ¢,. Since the size and shape of the failure zonc is a function of the time variable t, and since the
cquilibrium ficlds (stress or displacement) are a function of coordinates of the surface at time t,, then the
cquilibrium ficlds will be implicit functions of t,. Further, we know that the spatial dependence of an
cquilibrium displacement ficld is always a bi-hatmonic function with coefficients oi the bi-harmonic
scrics depending on the surface coordinates of the failure zone inclusion. Thus we also know, a-priori,
that the paramectric dependence on t, will appear in the coefficients of a bi-harmonic serics expansion for

the cquilibrium displacement.

In the dynamic description of the phcnomena associated with spontancous failure in a stressed
medium the time dependence of the equilibrium field is a hidden (or internal) variable. That is, the equa-

tions of motion in the linear rcgion outside the failurc zone are
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when written with the source coordinates as independent variables. However, the various dependent vari-
ablcs, such as the displacement ficld w(r,, t,), arc total ficlds; that s they include both the cquilibrium

ficld and a purely dynamic ficld as components. In particular, they arc of the form
U = ul® +u® @2n

where the "dynamic ficld”, u®, can be defined simply as the difference between the ficld u, appearing in
(20) and the field u® defined by (18). Clearly, (20) docs not display the cquilibrium ficld u/® cxplicitly
and so it, along with the other cquilibrium ficlds connccted with this equation, can be termed hidden

intcmal ficld variables.

Ordinarily the cquilibrium ficlds are of no consequence in the solution of (20), since in most elasto-
dynamic problems the equilibrium displacement is not a function of time. Thus, in the case when the
equilibrium is constant, substitution of the complete form for u, into (20) produces 3, (p 3 u®) for the
incrtial term and substitution of the comparable expressions for 1, and g, involving the sum of their
cquilibrium and dynamic components, results in cancellation of the resulting equilibrium terms by virtue
of the equations of cquilibrium, as given by equations of the form of (18). Thercfore in the case of time

independent equilibrium, equation (20) is an cquation for the dynamic fields and states that:
AP UM -t =pg®ik=1,2,3

However, when the equilibrium ficlds are time dependent, as is the situation for a spontancous

failure process, then equation (20) gives a different result. In this casc wc have

Uy = Uée)(l", "s) + u{d)(rs' ts)
B =100, L) + 100, 1) 2)
&= gk(C)(rs' ls) + glsd)(rs’ ls)

where the cquilibrium ficlds all depend on ¢ by virtue of cquations (18) and (19). Now, usc of thesc

forms in (20) gives:




—r

3. (P 3 + 3 (p ) -t - 3t = p gl + p g®

Here the incrtial term involving uf® does not necessarily vanish, since there will be variations in u®

becausc of the time dependent boundary changes. However, as previously noted in equation (18):

) = - gl

and this relation holds in all situations; that is whether t{? and g are parametrically time dependent or

not. Thereforc we have,
3P Au®) - 31’ = - 3, (p A ) + p gV i1, € Vi)

The equilibrium field in the linear zone outside the failure volume can, ho - 2ver, be expressed as the
sum of the changes in the equilibrium statc due to the introduction of the failure zone, which can be
dcnoted by u®’ (r, , 1), plus the (time indcpendent) field u® (r,) describing the initial equilibrium state.

Thus we can always express u® as
9@, =u @, D+ ) eV,
as a conscquence of linearity. Since time derivatives of u® vanish, then the equation of motion becomes

3P U -a1"= -3, (Po u) +pg? ; reVi(t) (23)

Thus, we have that the term - 9, (p 9,u®) is the source term (or "equivalent body force term”) for the
dynamic ficld generated by a localized failure process within a prestressed solid. Clearly this sourcc term
is distributcd throughout the region V,, since it involves time rate changes of the equilibrium displace-
ment defined throughout this region. Thus, the equivalent body force term for an carthquake is not the
divergence of a stress drop, but is an “inertial force” produced by changes in the elastic equilibrium dis-
placement ficld that occur because of the creation and growth of the failure zonc in the prestressed solid.
More specifically, if the failure zonc growth occupies a time interval (0, 1), then ncglecting the small
cffects of density changes associated with the rclaxation of stresscs:

0:4<0

~ 0P 0 = - p 3 u ={F(r, ) #0; 0 L < T
0 M l. >Ty
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where the "force™ function F(r,, 1) is a direct function of the failure volume time history of growth. This
function must also depend on the rheology of the material within the failure zone as well as the elastic

propertics of the medium surrounding it, by virtue of the boundary conditions at the failure surface.

The analytical form of this source term is prescribed by the boundary valuc problem of (18). There-
fore, since the ficlds prescribed by (18) are equilibrium ficlds, it follows that the displacement ficld u' is
a biharmonic function of the spatial coordinates (c.g. Landau and Lifshitz, 1951), as noted earlicr.
Further, the ficld u® and u®" arc similarly biharmonic. Thus, since the cocfficicnts of the biharmonic
scries arc fixed by the shape of the failure zone inclusion as well as by the value of the initial stress ficld
and the rheology of the material (both within and outside the failure zone), then the parametric time
dependence of u® will be contained within these series cocfficients. Consequently, even without
knowledge of the prestress ficld, the rate of failure expansion, the material properties and the shape of the

failure zone, we know a good deal about the analytical form of this cquivalent force term.

Before making use of this formulation for the dynamics of failurc phenomena (and our knowledge
of the biharmonic form of u®) it is useful to point out that this formulation is a particular example of a
morc gencral class of problems involving time dependent internal equilibrium changes. In this regard, it
has been shown by Dilts (1985) that the decomposition of stress and displacement ficlds into dynamic and
cquilibrium components, so as to display the intemal equilibrium ficld variable, allows the permancnt
deformations due to microcracking or lattice dislocation creation or movement (which results in macros-
copic plastic bchavior) to be treated directly in terms of equilibrium ficld changes in the cquations of
motion for the material. As with the present problem, time dependent equilibrium changes appear as
dynamical terms in the cquations of motion. However, as shown by Dilts, since the particular equilibrium
ficld changes associated with microscopic disordering within the solid changes are gencrally dependent
on the dynamical displacement u® and its derivatives, then the result is the occurrence of non-lincar

terms in the equations of motion.
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On the other hand, we obscrve that the result expressed by (23) is a linear equation. This is becausc
we can partition the spatial region around a single failure zone into zoncs of lincar and nonlincar matenal
bechavior, where the changes in equilibrium within the linear (clastic) zonc only occur because of the
rcquircment that boundary conditions must be satisfied on the time varying failure boundary. Therefore,
the equilibrium ficld, u®’, at a point in V, docs not depend on the dynamic displacement or its derivatives
at that point, but only on geomctric and material characteristics at the failure boundary. As a conse-
quence the equilibrium term in (23) is linear. However, the behavior of the material within the failure
zonc would be described by internal equilibrium ficld changes that depend on the local displacement field
and its dcratives due to the intense microscopic disordering produced by any failure process. Conse-
quently the dynamics of the material motion in the failure zone would be described by an equation of
motion with dynamic terms again involving changes in intemal equilibrium, but now with these terms
depending on the local dynamic displacement and its derivatives, so that these terms would be nonlincar

in the dynamic ficld variable.

We note further that both lincar and non-linear changes in equilibrium can result in either absorp-
tion of cnergy from the dynamic ficld or rclcase of energy to it. That is, "dynamic equilibrium” terms in
the equations of motion can corrcspond to cither "sources” or "sinks" of energy for the dynamic field.
Further, this bchavior may not only be spatially dependent but also time dependent, so that encrgy may be
absorbed or stored at a point and later partially or totally released at that same point. Clearly, because of
the irrcversible nature of the nonlincar changes within a failure zone, we expect absorption of cnergy in
this region while in the linear zonc we expect a net reduction of stored energy in the equilibrium ficld,
with the stored cnergy changes being a conscquence of relaxation of the equilibrium tectonic prestress
ficld around the failurc zonc. Clearly then, the contribution of the cquilibrium ficld changes as "sources”
for the dynamic ficld can be very complex and can involve temporary increases in stored energy, followed
by decreases, since the strain changes are reversible in the lincar zone and the growing failure zone can

require increased strain levels locally followed by decreases as the position of the point rclative to the
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failure boundary changes. Such behavior will be dictated, on a spatial and temporal basis, by the analyti-
cal form of u®" in cquation (23), with the time dependent bihammonic cocfficients in the expansion for u®

reflecting the changing position of any point in the medium relative to the failure boundary as it grows.

In addition to the rather complex lincar behavior 1o be expected from the volume source tcrm in
cquation (23), it is also to be expected that dynamical complications will arise a. the boundary of the
failurc zone. Here we expect, on physical grounds, that energy will be transferrcd from the linear zonc to
the nonlincar zone where it will be absorbed by one irreversible process or another. In particular, it can
be expected that the encrgy required to cause failure will be, at least in part, extracted from the dynamical
field at the boundary. Such phenomena must therelore be reflected in the boundary conditions connecting
the linear and non-lincar zones at the failure boundary. Thus such boundary conditions, along with (23).
scrve to define the complete dynamical boundary valuc problem for the displacement ficld in the lincar

region V.

The boundary conditions that are appropriate are thosc that express conservation of mass, momen-
tum and cnergy across such a "singular” surface, where the possibility of irreversible energy absorption
along a moving boundary is explicitly addressed. This physical situation has becn considered by
Archambcau and Minster (1978) and they have shown that the appropriate boundary conditions on the

failure surface, oV’, are:

[[p"i‘"i]] =0
Lovev -ton] =0 (24)
[[(PE vi - Vil + q,)n,]] =0

where the double bracket denotes the change in the quantity enclosed across the failure surface. Thus, for

cxample:

[[Vi]] = vi(0Vy) = v(dVy"

where aV,” and 9V’ denote the surface @V~ approached from inside and outside the failure zone.
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In these relations v denotes the particle velocity [%'li] n is the normal 1o the failure zonc boundary

and q the heat flux vector. Also
vsv-U
where U is the velocity of the failurc surface boundary and E is the total encrgy density for the material,
dcfincd by
E = r + Vka/2 + ¢
with T the intcmal cnergy and ¢ the gravitation energy. The quadratic v,v,/2 corresponds to the kinctic

encrgy contribution.

All the ficld variables appearing in (24) are, of course, functions of the coordinates and time, includ-
ing the surface normal n aad U, the rate of change of the failure boundary with time. The first of the
equations in (24) expresses conservation of mass, the second conservation of momentum and the last con-
scrvation of energy. All the field variables include equilibrium as well as dynamic components. Thus,
for example, the particle velocities have the explicit form:

v=v9 4y

As was shown by Archambecau and Minster, the boundary conditions can be reduced 1o simpler
form for the physical situation prevailing during rapid failure. In particular, when the density changes
(and the gravitational change ¢) upon failurc are small and the rupture rate is high (that is equal to a
significant fraction of the local shear velocity and much larger than the particle velocity v then, when the

heat flux changes across the failurc surface are neglected relative to the larger mechanical flux term

[[vktu]]. it follows that the equations in (24) reduce to:

oUrllv ] = - [+] (25)

where 1, = 1,0, arc the componcents of the surface tractions on the failure surface. Equation (25) combines
the conservation of mass and momcentum cquations from (24). Further, undcr rapid failure conditions the

cnergy cquation in (24) reducces to:
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[t ]l =202t (26)

where the change in intemnal energy, [[I‘]] is identificd as a material property (ie. a “latent heat” of transi-
tion) and is denoted as L. Here the "rupture rate”, Uy, is defined as

UR = (U ~-v)n
and cxpresscs the cxcess of the expansion rate of the failure surface over the particle velacity in the direc-

tion normal to the surface.
Equation (26) expresses the fact that an encrgy barricr 10 failure exists, and this barricr is

represented by the internal energy change [[F]] (or L) rcquired for failurc to occur in the material.
Further, the equation shows that the rupture ratc is proportional 1o the magnitude of the traction change

(the “stress drop”) divided by square root of this energy factor, that is:

1 M}m

UR:p 2L j

Since p and L are material constants, then this says that the magnitude of the traction or siress "drop”,

2
At} = !Itktk]] , is directly proportional 1o tic rupture rate and vice-versa. This is a dynamical condition
that will reflect itself in the proper solutions for radiation ficlds from failure processes in different

material types.

The two dynamical boundary conditions on the failurc surface can be combincd so as to climinate
Ur and produce a single boundary condition involving only the dynamic ficld variables and the intrinsic

intcmmal cnergy change, represented by the (material) parameter L. That is from (25) and (26) we have:

1/
q

[d- - puliad]  [s] @

assuming that nonc of the traction jumps vanish (in which case the conscrvation relations arc trivially

satisficd. )
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Clcarly this rclation shows that the jump, or discontinuity, in the particle velocity vector across the
failurc boundary is in the opposite dircction as the jump in the traction vector (and vice-versa) and is, as
wcll, proportional to the square root of the material parameter L. However, the relationship between par-
ticle velocity and traction jumps is non-linear, due to the dependence on the traction ratio on the right side
of (27). Thus, while (25) expresses a similar working relationship betwecn the traction and velocity
Jjumps across the failure surface, the true non-linear relationship between these field variables is hidden in
the factor involving the rupture rate. In particular, since the rupture rate is required to be proportional to
the stress drop factor |Az] in order that encrgy be conserved, it follows that (25) represents a non-linear

rclationship between the traction and particle velocity field variablcs.

It is worth noting that the dynamics of the failurc process requires that both the particle velocity and
the tractions be discontinuous across the failure boundary. This is not the usual assumption made in the
construction of pure kinematical modcls of failure, such as in a dislocation model of an earthquake where
the tractions are assumed to be continuous while components of the particle velocity (and displacement)
arc assumed discontinuous. Ncither is it the case for the variety of so called stress pulse models, where a
stress drop on the failure surface is used to "drive" the surrounding (elastic) medium and thereby produce
a simulated carthquake radiation ficld. Obviously when (current) dislocation or stress drop models are
uscd to gencrate a moment representation, for purposes of inverting observational data from earthquakes,
the result will be non-physical in the sense that the boundary conditions assumed are not compatible with
the dynamical constraints imposed by cnergy and momentum conservation. Therciore "displacement
offscts” or "stress drops™ inferred from obscrvations otvained through the use of such formulations do not
actually represent these physical quantitics. As is shown in a later section (VIII), the required form of the
Green’s function surface integral representation describing the seismic radiation involves both traction
and displaccment changes on the failure surface. Therefore a combination of a "stress pulse” -.ud "dislo-
cation” sourccs is gencrally required for compatibility with the dynamical constraints involved in spon-

tancous failure.
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V1. The Green’s Function Representation of Dynamic Fields Generated by Time Dependent Equili-

brium Changes

A compact represcntation of the dynamic ficld u® appearing in the cquations of motion (23), which
also incorporatcs the cffccts of the boundary conditions in (25) and (26), is obtained by introducing the

usual Green'’s function for the clastic medium V,.

Specifically, consider the Green’s function G (r, t; ri,t,) satisfying the inhomogencous clastic wave
cquation:

9.(p 0.GM - 9G =4n 87 8(r —r)8(-y) =4nA] (28)
where G is a two point tensor obeying the usual causality relations (sce Archambeau and Minster, 1978,
for details) and where r; and t, are source coordinates and time, while r and t arc receiver coordinates and
time. Here 8 is the Kronecker delta (which is zero if k#m and unity if k = m), while 8(r ~r,) and 8(t - 1,)
are Dirac dclta funciions. All partial derivatives in (28) are to be taken with respect to the source coordi-
nates. Further, G denotes the stress tensor associated with GJ*. That is:

Gyg =Cyy oG/

where Cy, is the fourth order clastic tensor.

We can take G to satisfy boundary conditions along the cxterior surface of the medium and along
interior surfaces of material discontinuity, excluding the (growing) failure surface, since in the cases of
most interest explicit representations of G in layered media are known. That is, Gi" may be taken to
satisfy all "normal" boundary conditions within flat or spherically layered media except thosc "non-
standard” conditions, given by (25) and (26), which apply to the failurc boundary. An explicit form for
G which satisfies the normal material boundary conditions involving continuity of tractions and the nor-
mal component of the particle velocity (or all particic displacecment components if the matcrial boundary

is a "welded” solid-solid interface) is, in the frequency domain:

(@ v (r , )
Glm(r, o: l'(.(l);)=41tz W ( ) WI 1 1

(0? ~ )Nk, w) @9
k (W) 1 ’
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where y,, are the component displacement eigenfunctions for the medium (without the failure zonc) and
k(w) denotes the infinitc sct of eigenvalues for the medium. (Here , is the complex conjugatc of y, and N
(k, @ ) is a nomalization constant.) Since the eigenfunctions y satisfy the usual material boundary condi-
tions by definition, then G also does. For the eigenfunctions in layered spheres and half spaces see, for
cxample, Ben Menahem and Singh (1972, 1981) or Harvey (1981). (For a layered half space, however,
the sum over the wave number k(w) in the eigenfunction expansion for G/ may be replaced in pan, or
totally, by an integral, so the summation in (29) should be interpreted as a generalized sum.) These simple
"layercd media" cases are those of most intcrest in geophysics and in any case are sufficient for a study of

source radiation effects.

Thercfore, with the Green’s function of known form satisfying all boundary conditions, except those
on the failure boundary surface itsclf, we can obtain an integral representation of the dynamic displace-
ment, u®, in cquation (23.) by the usual methods. That is, forming the inner product of each term in (23.)°
with G and integrating over the source coordinates in the volume V, outside the failure surface and over

the source time, gives:

4o 4o 4o
Jldll J‘a‘, [p 6‘_uk(d)] GrdV, - J‘dl‘ IaltE)Gde‘ = - J.dt‘ J-[p Au - p g{“’] av,
—oo V, —o0 V| oo Vl

Likewise, forming the inner product of each term in equation (28) with uf® and similarly integrating over

the source variables gives:

-

[}

+00
dnj az.[p al.Gi“} u{®dv, ~ J d.,f G uPdV, =4rud(r 1)

v, v,

} ——y

where the formal integral propertics of the delta functions on the right side of (28) have been used. Now,

subtracting the second of these cquations from the first and making use of the fact that

d m d
Txi)alG;"=le aluk() ,

ultimately gives:
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I a(l [p all Gk - p atl uk dvl - d(] N [‘C‘i Gk G u ]dvl

+ J dt, J [ah(p Bhué")')—pg(d):ll MV, = - 4nudr, 1) (30)

- Vi(t)

The first integral term can be transformed so that the time intcgration can, in pan, be evaluated.
However, it is clear that the failure zone is expanding with time and so the volume V| exterior 10 this zonc
is time dependent. Thus we can’t simply commute the time derivative with the volume integration in the
first integral tcrm, but must take account of the time variation of the spatial integration. To do so wc can
make usc of the transport theorcm for the case of a boundary that moves at a rate that is not equal to the

particle velocity in the medium.

This case has been treated by several authors, for example by Eringen (1975) and by Minster
(1974), the latter giving scveral detailed derivations of the result. (Archambeau and Minster, 1978, usc
the thcorem in a similar application as well.) Specifically, for any function F that is dependent on the

deformation within the medium (ie. dependcent on the Eulerian coordinates) we have:

4 | rav, = JQE av, + JFU-ndal 31)
dt, t

Vi) Vi) ! Vilw)
where U is the velocity vector of the boundary surface and n is the normal to that surface.

Now if we take the integrand in the first integral in (30) to be the function F, then we can apply (31)

dircctly. We therefore have, for this first integral term:

400 400
o[ a®  aGp J’ J’ dul® . 9GL
— V, = — m _ (d)
Jdt‘j an,[ o G -p o vy =)y o G o v
—oo Vi) ~—oo vl (L)
400
oul® oG
‘jdll I pP—=—Gf ~p——u Unnda,
ot oL
aid Vi)

However the first integral on the right side of this cquation vanishes identically, that is:
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+oo 4on +oo
ou® aG{" ou® oG™
jdt, iJ. p—G - p—u®|aV }={ | p—=—Grdv,} -{ | p——u®dV,} =0
dt a, at; ay ay

nad Vi) Vi(u) Vi)

This follows from the fact that the medium is at rest initially so:
du®
ul®= 3 =0Q,as t) 9>~ o0
and since G is causal, so that
oG (r, L1, ty)
G{n(r» L r’ll) Il,:a‘: —_k—(—'at_l— l,=n=0
1

(Actually the above is true for all t<t,, but, in particular, when t; becomes infinite then it is true for all

receiver times t.)

Therefore, using these results in (30) and further applying the ordinary form of Gauss’ Theorem to

the second integral in (30), gives:

oo
‘ Ju@ oG
4rud(r, t)=jdtl J- { [Tf)+p ;: Ux}G{" —[GLT +p atk Ul}uk(d) } nda,
- Vi) ! !
$oo
f 0 auéc), @} m
Jo ] [ osforen »

This result is onc form of the integral Green's function representation of the dynamic radiation ficld, u®,

produced by a growing failure zone in an initially stressed medium. The result is formally cxact.

The first integral term on the right side of (32) involves an intcgration over the failure boundary and
the integrand in brackets contains the samc combination of terms as are involved in the conservation rela-
tion (25). Thus, the integral rcprescntation contains the natural boundary conditions that apply to the
physical process. Since only dynamical field quantities are involved in this surface integral term, it is
appropriatc to interpret this intcgral as representing the interaction of the dynamic ficld with the (grow-

ing) failurc boundary. As such it would represent scattering and, possibly, absorption cffccts at the boun-

dary. (Note that the rupturc rate, Uy = Upn;, appcars in the integrand of the integral and that Uy is a func-
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tion of the energy, L, absorbed in the process of failure.)

The sccond volume integral contains the incrtial term arising from changes in the equilibrium ficld
in the elastic medium surrounding the failure zone and corresponds o the fundamental source term that
gives rise 1o the dynamical response of the medium. Because this term generally represents a relaxation
of stress and a reduction of stored strain encrgy (which shows up as energy in the radiated elastic wave
ficld) the elastic waves produced by this source term have been called relaxation source fields (Archam-
beau, 1964, 1968) and used to approximate earthquake radiation ficlds. This term represents a relcasc of
energy from the entire prestressed medium surrounding the failure zone and, as such, is the fundamcntal
source of the elastic wave radiation produced by failure. In this regard the gravity term appearing with the
relaxation source term involves the dynamic changes in the gravity field due to density changes in the
medium. As noted earlicr and as described in the Appendix 1, it is very small compared to the relaxation

term and can be neglected.

V1l. Equivalences: Initial Value (Relaxativi.j Sources

As was just mentioned, the result given in (32) is slightly different than that obtained in carlier work
using a different method of derivation, which was bascd on the view that the radiation process associated
with failure in a stressed medium could be described as an initial value problem. Nevertheless the
representation in (32) can be transformed to a form that is necarly identical to that obtained from the ear-

licr analysis.

In order to show this latter "equivalence”, consider the integral term involving the incrtial source

factor ( 3,(p 9,u"). We note that the integrand in this integral may be "cxpanded” to the form:
[31, [p o, u® ]] =9, [p 3,u{ (G )] p 3, (3,GM

and that the right side of this idcntity can be uscd in the integral instecad of the quantity on the left. Thus

the integral term in question can be written as:

+oo +eo
J.dt, I 9, (pa u(” GPdv, = J‘dt, J p A.u 9,Gldv, - jml J d, pa u‘°’ Hdvl
—oo Vi) —oo Vi) —o0 Vi)
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(33)

The first integral term on the right side of this equation is that obtained as the "relaxation source” term in
the initial value formulation, while the second integral is an extra term not explicitly present in the initial
value formulation results. This latter term can, however, be recast into the form that can be combined
with the surface integral terms in (32) by using the transport theorem result in (31). That is, using

p 9, G for F in (31) gives:

4o +oo +eo
Jdt, J 3“[p o,u® (Gl ) dV Jdl J p A uGraV,| - Idt, I [p al,u{"'c,:"] Undd,
—oo Vit e —oo aVit))

(34)
The time integration in the first integral on the right yields the spatial volume integral evaluated at the
(infinite) time limits. Therefore the first intcgral on the right is:

4o

+oo

.[ . I pAuIGIAV, | = .[ PWIGIdV, =0 (35)
—eo V|(lx) Vilts)

where the integral vanishes since the equilibrium ficld is taken to change continuously (the failure zone

growth described by the rupture ratc Uy, is taken to be a continuous function of time) and since:

ty— — oo

lim 9,u® =0 ; limGl(r, vy, ,)=0
ty—dee

Thus, using (35) and (34) in the equation (33) gives:

+oo +oo +eo
- Id" j 8“[() ahué”']Gf‘dVl = Jdll I p 3,u 3, GV, +.[dl, J [p 8hu§°)'Gf‘] Unda,
e Viu) —oo Vilu) —oo avl(‘l)

(36)

Inserting this result in the basic representation integral for the dynamic ficld, equation (32), there-

fore produces:

$oo
ou’
4’ (r, 0 = drul + Jdn f { [n‘f’w 5 U G{“—[ P+ Uil } naa,
—o V(1) !
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u (G
+ _[ dt, J p L ldv, + jdt, J.pg,fd)G{“dV, (37
J ay | oy R

where a factor 4nu’™ has been added to both sides of the result in order to put the final equation in a form
comparablc to that given by Archambcau and Minster (1978). In this result we have defined relative dis-

placements, measured from the initial state, so that as previously defined

0 = y© _ y®

for the equilibrium ficlds, and similarly

uw=u-ul

for the "total" ficlds (dynamic plus cquilibrium fields). Thus relative ficlds are measured from the fixed
initial equilibrium state (with displacement u®) and denoted by primes throughout. In view of these

dcfinitions and the relation u = u® + u@, then

w = u@ 4+ @

If the start and completion of the failure zong is taken to be the time interval (0, 1), then the interval
of time intcgrations appearing in (37) can be reduced. That is, Ung = 0 and 9 u(® =0 for t,<0 and for t,>t
in the intcgrals, and therefore the time limits on integrals involving these factors may be reduced accord-
ingly. In particular, they become the interval (0, min [t, 1]), as noted by Archambeau and Minster (1978).
With the convention that the failure zone development occurs over the time intervat (0, 1), then we also
have that u® = u® - u® =0, for ¢, <0; while u® = u® —u®, for {, > 1, with u® denoting the final equili-
brium ficld.

With the conventions of a specific reference state and a finite source time interval from 0 to t (which
involve no loss of gencrality), we get similar results from (37) as those given by Archambeau and Min-
ster. In particular, the identical volume integrals corresponding to relaxation effects and gravitational

cffects. However, the surface integral in (37), while of the same form as that obtained from the initial
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valuc formulation, is nevertheless different in detail than that obtained earlier. In particular, the dynamic
stresses and displacements, 1P = 1, - 1 and u{® = u, - u®, appear in the surface integral in (37) while in
the initial value formulation these are (implicitly) replaced by the "relative” stress and displacement com-
ponents 'y, =T, — 7 and v’y = u, - u®. The fields 1 and u{® are parametrically time varying during the
failure process (by definition) and the fields 1’ and u® are fixed, time independent, values of equilibrium

stress and displacement before initiation of the failure process.

Considering the simplicity and rigor of the derivations leading to the representations in (32) and
subsequently to (37), it is concluded that (37) is a proper exact representation of an initial value formula-
tion of a spontancous failure source (carthquake). Thus it appears that the direct initial value foiuiulation
obtained carlier did not express the surface integral term completely, or at least that this latier formulation

was imprecise as to the definitions of the field variables in the integral temms.

Since the surface integral term rcpresents scattering and absorption of energy at the failure zone
boundary, it may often produce smaller second order effects in the radiation field compared to the rclaxa-
tion integral term in (32) or (37). Indeed, the early medels gencrated from the initial value formulation
entircly neglected the surface integral term, along with the very small gravity effects, so that only the
rclaxation term in (37) was used to represent the radiation. (The resulting field predictions were called
"transparcnt source approximations”.) Thus, the earlier source models never included the surface integral
contributions, so that in the use of these approximate models the exact nature of contributions from the
surface integral term never arose.. (However, neglect of the surface integral coniinbution was done
without analytical justification, with only intuitive arguments used). The representations in (32) or (37)
can, in any case, be uscd to accurately dctermine the nature and size of the true scattering-absorption

effccts.

Some concrete justification for neglect of the "scattering-absorption” term has, however, becn pro-
vided by Stevens (1981) who comparcd the "transparent source approximation” for a spherical transition

zone in a prestressed medium with the exact solution for the same problem; with the latter containing the
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proper surface integral scatiering tcrm.  This comparison showed that the surface integral did indced con-
tribute small reflection-refraction effccts, but that a much larger direct first arrival radiation ficld was
obtained from the relaxation integral term and that it was a good approximation to the total source radia-
tion ficld. However, since the source considered by Stevens was an instantancously created spherical
failure zone, it did not contain the possibilities for absorption of cnergy as would a spontancous failure
process. Thus the "absorption” effccts at a growing boundary were not included in the comparison.
While these latter effects might in fact "damp out" scattering from the source boundary, so that the two
effects might cancel each other out in pan, it cannot be confidently concluded that this would always be
the case. That is, it is not clear that absorption is of the same ordcer as scattering in its ¢ffect on the total
radiation field and could, at lcast in some circumstances and at some points on the failure surface, be a
considerably larger effcct and so significantly modify the total ficld from that predicted by the relaxation
tcrm alone. (For example this might well be the case for radiation contributions from near the [ront of an

advancing thin cllipsoidally shaped failure zone).

Therefore, given all these possibilities, retention of the surface integral contributions in specific
source models seems desirable in most cases of spontancous failure. Idcally then, models of earthquakes
should include the scaticring-absorption surface integral as well as the relaxation term, whether (32) or

(37) is used as a basis for the model predictions.

It is also appropriatc to note that the earlicr initial valuc development employed the device of con-
sidering the rupture process as being a scries of elemental discontinuous changes in the rupture dimen-
sions, with these changes producing corresponding discontinuous changes in the equilibrium ficld u®.
By taking these changes to be of infinitesimal size, and the time intcrval between them to be of
infinitesimal duration, a limiting process of summing the infinitcsimal contributions was used to produce
the effccts of continuous failure growth. By contrast, thc present approach treats rupturc growth and
changes in the equilibrium ficld to be continuous from the beginning. These two methods should give the

same results, provided the failure process proceeds in a continuous fashion. If, however, there is a finite
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discontinuous change in the rupture ratc and a corresponding discontinuity in the equilibrium ficld, then,
as noted by Stevens (1980, 1981), the integral in equation (35) will not be zero. However, for carth-
quakes which result from spontancous rapid failure resulting from slow loading, it is not likely that
discontinuous changes in the rupture rate occur, so that the imposition of a continuous time varying rup-
turc ratc in the formulation scems justificd. Nevertheless, discontinuous changes cannot be ruled out with
absolute certainty. Such cases can, however, be considered in either formulation provided care is taken to
explicitly account for any finite and instantancous changes in the rupture rate and the equilibrium field

u®.

An cxample of a singular case in which a "supersonic" rupture rate combined with spherical sym-
mctry of the developing failure zone produces discontinuous behavior occurs when an explosion is
detonated in a prestressed medium. In this case the failure zone can be completely formed by a super-
sonic shock wave before the medium outside this failure zone can react dynamically, since the shock
velocity (and rupture rate) is taken (o be larger, at all points on the spherical failure surface, than the
highest intrinsic vclocity of signal propagation in the medium. Consequently the failure zone is, in
essence, formed instantancously in-so-far as the (causal) relaxation of the equilibrium ficld external to
this failurc zone in concecmed. This type of source has been treated in detail by Archambeau (1968, 1972)
as an initial valuc problem, in the same spirit as in the case of spontaneous failure, but where the discon-
tinuous change in the equilibrium ficld at the conclusion of the shock induced failure process is accounted
for explicitly from the beginning. Stevens (1980, 1981) obtains the same result using « method similar to
the "time dependent equilibrium mcthod” described here, but tailored to the case of the instantancous

spherical failurc zone.

In the prescnt formulation, if we impose the conditions of this singular problem on the integral
representation in cither of the cquivalent forms given by (32) and (37) we get the same results obtained by
Archambcau and Stevens; even though the representations in (32) and (37) were derived under the

assumptions of continuous failurc zonc growth with a finite rupture rate. In particular, taking the time at
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which the source is initiated (ie. t; = 0) as being the time at which the rupturc zonc has been formed, so

that Upn, = Ug = 0 for all times cqual or greater than t, = 0, then:

o 0:4,<0
uw(r, ) =yr
Lu(F’ - u“)] H(t); 4,20

where H (1)) is a step function in time centered at t; =0. Now both (32) and (37) give:

oo
aG™
4mulde, 0 = J a J 07 - Grulnaa, + j pus {Ei]dvl o
1

0 oV, Vi

* . . - - .
where u, = [u,§n - u,?’:l and where V, is the fixed volume cxterior to the failure zone. This is the same

result obtained when the discontinuous effects are explicitly accounted for when deriving the integral
representation. Thus the results in (32) and (37) apply to this discontinuous case as well as to all continu-

Ous rupture cascs.

VIIi. Equivalences: " Dislocation-Stress Pulse" Sources

Another form of cquivalent representation of the radiation ficld duc to failure in a stressecd medium
can be derived from (32) and this representation involves only integrals over the failure boundary. There-
fore it can be compared to kincmatical representations (dislocation models) and to the so-called stress
pulse representations that involve only integrals over the failure surface. The approach followed is a sim-
ple generalization of onc used by Stevens (1981), which was introduced to demonstratec a similar
equivalence when a failure zone is “instantancously" created. In this case we want a result similar to

Stevens’ result, but for the general case of a finite rupture rate.

To obtain the desired representation we nced to transform the rclaxation intcgral term in (32) 1o a
surface integral taken over the failurc boundary. To do so we will need to develop a purcly formal
integral identity involving the cquilibrium ficld u{® and the dynamical Greens function G*. This is

achicved by considering the basic differcntial equations satisficd by these fields, which are:
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811'(" -p gk(c)
G -9.(pdaGM= —4mAMr-r;t—1y)

Taking the inner product of the equation for G" with u{® on both sides, and integrating over the source

time and spatial coordinates, gives:

oo R and +oo
Jdt, _[ [al,(p a,,G v, - Jdll AGIudv, = J J- mudV, = ana’
s V(L) - Vi) —= V(1)

Now taking the inner product of the first cquation with G{* on both sides, integrating and subtracting the

result from the previous equation, gives:

I d J [&.(p al.G:“>]uk‘°"dv, szl aﬁm gy G:‘] av, (39)

~ Vi) —e  Viy)

400
J j pg“’ G.:“dVI 4mu s
- V(L)

Noting that
Gy au® =1 9,Gl,
duc to the symmetry of the clastic tensor Cy,, then it follows that:
9GP ul -9 'GP = al[G,k ul® -l G;“]

Thus the integrand in the sccond integral on the left in (39) can be replaced with the divergence term in
the equation above and in this form the resulting volume intcgral can be transformed to a surface integral

using Gauss' thcorem. We therefore obtain from (39):

+os oo
Idn, J. [a‘,(p ahc;")] u{dV, = 4mul + J.m, I [G x " - 1 G,:“]n,da, (40)
e Vi) - Vi)
- J‘dlx _[ [P gée),] Gydv,
nad Vi)
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Howcver, we note that
[2.(0 3,00 ]u - [3,(0 3,0 67 = 2, [0 3,67 - p A0 G|

Therefore we can replace the volume integral term on the left side of (40) using this last equation. This

produces:

+00

$o0
Jdl] J d, pa u‘°>” PV, = 4rul® + "dll J. Grul® -1Ge ]dV1

Viity ) — )
4an

d ¢ e}’ m ey m
Jdll j 5“ (p ath‘)u() —(pahujf))Gk]dV, ‘Jdlr J. ng()c‘k av,

Vi(hy) - Vi)

In addition, we can apply the transport thcorem to the volume intcgral involving the time derivative on
the right side of this cquation to transform it to « curface integral. That is, using the transport thcorem

given in equation (31), we get:

f d .[ [(P 3,5 ~ (p A uNGY }dvl = f [(p G - (p al.uk@')G{“}“Vl

vl(h) Vi)

400
- J‘dll J' [[P az.G{n] ul -~ [P 31,U§°’] G:‘] Undd

—o  gVi(u)

where the first term on the right vanishes at the infinite limits; since 0,G" =G =0, for y,— + o0, and

u® =9, u® =0, for t;— - «. Thercfore the previous cquation can be rewritten in the final desired form as:

J- J. l. pa“uf)ﬂ AV, = 4ru jdtl J‘ { Gu‘ +p U 0,Gf ] e _ [ © 4 p U, 3,0 ] {“}n[da,

Vi(u) —e V(L)

- jdll J’ P Sk(c)'GFdV) 41)

-0 Vi(y)

This integral identity now cxpresses the relaxation term that appears in (32) in terms of a surface integral

on the fatlurc boundary. Thus (41) can be uscd to transform the basic representation intcgral cquation in
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(32) into the following equivalent representation:

oo
4ru’ (r, 1) = Jdl, j {[‘t',k +(p ahu'k)u,] G- [G +@ aho,;")u,] u'k} n dad,
- gVi(y,)
+ Jdt, J. p g,GrdV, 42)
bt Vi)

where we have a result expressed in terms of the "relative” displacement, stress and gravity fields; that is
0 = u® + u®, etc.

Equation (42) has a form that is quitc similar to the standard elastodynamic integral equation used
to obtain cquivalent dislocation “models” for earthquakes. (If Ujn; = Ug were set to zero in (42), then it

would have the identical torm.) However, the integral representation in (42) is actually considerably more

complex than the standard form; in spite of its relatively simple expression.

In order to display this complexity and isolate the various contributions to the radiation ficld, it is
better 1o rewrite (42) with the dynamic and equilibrium field explicitly displayed. That is, (42) can be

rewritten in expanded form as:

4’ (r, )= J dy, J- { [tlg Y+ (p d, Uéd))Ul] G¢ - [er: +(pd, G )Ul] uéd)} nda,
—oo Vi)
+oo +oo
o | {[1&’ +(p3,uU 6F - [GE + 3,6y ué"'} naa,+ Ja | oanorav, @
e Vi) —oo Vi)

where the (lime varying) cquilibrium ficld contributions are cxplicitly displayed along with the purcly
dynamical parts of the displacement-stress ficlds. Here, of course, v’y = ul® + u on the left hand side of

the equation, so that the relative displacement ficld is represented.

The boundary conditions at the faifurc surface are such that the rupture rate vector U is a function of
both the equilibrium and dynamic ficlds (sce cquation 26). Further, from equations (18) and (25), we

have the boundary conditions:
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l[tl(f) nl]]=0 ; redVv,

PUR[[Vk]] = - l[‘k]] ; TEAVY,

(44)

with Ug = Ujn,, corresponding to the rupture rate. Here v, and t, = t,n, arc the total velocity and traction
vector components, involving the sum of cquilibrium and dynamic ficlds. Consequently, using these con-

ditions togcther gives:

pUR[[Vk]] = - [Iléd)]] (45a)
Thus, on the failure boundary aVv, (t;):
pURV + 1@ = pUgv/, + (@ (45b)

where Ov, and M denote ficld variables from within the failure zone. Also, the velocity ficlds both
inside and outside the failure zonc have the form v/, = v{# + v{*". Thus the boundary condition applying
on the failurc surface involves both the equilibrium and dynamic velocity components in the particular
combination expressed by (45). Thercfore, it is appropriate to rcarrange the terms in (43) so that the
boundary conditions cxpressed in (45) apply to one of the surface intcgrals, while the first of the condi-
tions in (44) applics to the other surface integral. That is, rearranging (43) to accommodatc the boundary

condiuions in scpaiate integral terms yiclds:

400
Ay’ (r, 1) = J dt, J. { [l{d) +pUgd, u k] G- [ O+ (pUg 3, GM u'k] da,
oo avl(‘\)
+oo ‘oo
+ j dt j [lk(c)' Gr - gt u,fe) dal J d, J (p g Grdv, (46)
—oo GV‘(l.) —o0 Vi(t)

where g™ denotes the tractions associated with the Greens function G, In this form the sccond surface
integral involves only equilibrium ficld changes and the first boundary condition in (44), pertaining (o the

equilibrium ficld, applics to it. In this regard we note that the first boundary condition in (44) applics to

the cquilibrium traction 1 n, = (1 + tPn,. But since [[ 1P n, ] = 0 also, then it follows that traction
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continuity applics to the relative stresses as well. That is

“:Tnf Y nl]] =0

and this rclation applies in the sccond integral. On the other hand, the first surface integral involves

dynamic and equilibrium field changes at the boundary, with the boundary condition (45) applying.

If there were no cquilibrium ficld changes, then the second integral in (46) would vanish, since the
cquilibrium stress and displacement ficlds appearing in (46) are measured relative to the initial state of the
mcdium. In this case there could be no failure boundary growth, so Ug=0 is implied, and the first

intcgral would reduce to the standard form with V, and 9V, fixed. Then we would have:

400 400
4rul¥ = j dy j [t,f‘” Gl -gf u,?”] da, + J dy Jp 29GP dv,
—0 Vv, -0 A\"A

and the first integral would represent pure scattering from the fixed surface dV,, while the volume integral

would be non-zero if there were dynamical changes in the gravity ficld.

Using this limiting case as a guide to the interpretation of (46), we can rewrite this equation as:

Raad +oo
anu'n(r, )= J' dy I [té"’ G- &' Uaf"’] aa, + I dy J. P Ur [(6..0'.‘) G - (0,6 u’k] da,
nad avi(t) —oa Vi)
4o +o0
+ J. dy I [Ly" G - g u,f"'] da, + j dy, J p gL G dv, (47)
—co V(L) oo Vi)

and interpret the first intcgral as the term duc to scattering, the second integral as that duc to absorption of
cnergy along the growing boundary (because of the presence of Ug and its dependence on the energy, L,
rcquired for failure) and the third integral as being the equivalent for stress relaxation and energy release
in responsce (o the growing failure boundary. Here again, the last integral is the (generally negligible)
gravily term. Because of the boundary condition in (45), the first and sccond integrais arc actually con-
nceted - which would be expected since scattering and absorption at the failure boundary must be inter-

connected, as was noted carlier.
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The field decomposition can be symbolically expressed as:

dnu’ (r,1)= [1“ WD)+ 1, @9+ u<=>')] +Ig ) +1,@)

(48)

where the tcrms on the right denote the scattering (I,.), absorption (1,), rclaxation (Iz) and gravity (Ig)

terms in (47). Here only the dependence on the dynamic and/or cquilibrium displacements arc explicitly

displayed, since the corrcsponding tractions appear with these displacements in the integral terms and can

be derived from them. (The brackets are used to indicate that the two integral terms I, and 1, should be

treated together in solving this equation.)

The relaxation term in cquation (47) is now in the form of a surface integral, with the possibility

that it can be viewed in terms of equivalent stress-pulse and dislocation sources. In particular, we can

write this term as:

I @) =4n [ur‘-?’ + ué?’]

(49a)

with u®® and u® as displacement fields duc to cquivalent stress-pulse and dislocation type sources,

defincd by

4mu D = J.d:1 J K G da,

ad avl(ll)
400
4D = — jdtl J- u® g™ aa,
—oo0 aVi(t)

(49b)

These two cquivalents are not independent however, since once the equilibrium displacement change ul

has been determined for the static inclusion problem then ® may be simply derived from it. Further, for

the static inclusion problem involved here, we have

’
u® = ul® +ul

where u® and u® arc the displacement ficlds with and without a failurc zone, while u represents the
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change in the initial state due to the presence of the failure zone. Here, u® w®” and u® arc all com-

poncnts of dihammonic vector ficlds. Thus, we already know the spatial form of both uf® and &, and that

the cocfficicnts of the biharmonic series for ul® , and the corresponding traction ® , are parametrically
dependent on the source time t; duc to the variable dimensions of the failure zone with time. Therefore

the surface integrals in (49) can be analytically evaluated once the failure surface is specified.

These cquivalent source integrals can be expressed in more explicitly recognizable form if we use

the definition of u(®” in terms of field changes from the initial state. That is, we can also write (49) as:

+oa
dnul = | ay iy - t,f"] G da,
X \
o (50)
anu®= | ay ud - u,f"] graa,
= W

These (wo source equivalents, corresponding in sum to the relaxation source ficld tcrm, may be inter-
preted as a continuously variable "stress-pulse” on the expanding failure surface, with magnitude cqual to
the traction "drop” on this surface, plus a continuously expanding closcd dislocation surface with a dislo-

cation "offsct” cqual to the displacement change from the initial state at the failure boundary.

‘Thus we find that failure induced volumetric stress relaxation and the seismic radiation associated
with it can be accounted for by a superposition of two familiar surface distributed source equivalents;
namcly a pair of rclated stress-pulse and dislocation equivalents. Since the radiation fields produced by
each of these equivalents will be superposed on one another, one can expect a total ficld having charac-
teristics that may be quite different from cither of the equivalents separately. In any case the equivalent
form of the integral cquation (47), or altcmatcly as expressed in (48) and (49), constitutes a second
rcpresentational form for the clastodynamic radiation produced by failure of a stressed medium and we
sce that this cquivalent form contains not only combined stress-pulse and dislocation equivalents that

account for volume relaxation cffects, but boundary absorption-scattering terms that arc not usually
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negligible. Therefore it is generally nccessary to solve the integral equation in (47)-(48) to obtain the

total wave radiation ficld. These applications are investigated in detail by Archambceau and Dilts (1989).

IX. Summary and Conclusions

Examination of some of the previously developed represcentations for scismic radiation from carth-
quakes, particularly those using the divergence of the mcdium stress, or the "stress glut”, in the moment
tensor rcpresentations of carthquake radiation ficlds leads to the conclusion that these represcntations
have no rational physical basis, nor can they be logically rclated, in even an approximate sense, to cither

the kincmatics or dynamics of such a source.

The appropriate represcntation of the radiation ficld can, however, be obtained in a quite straightfor-
ward manner by noting that the displaccment-stress ficlds in the medium are a sum of dynamic and equili-
brium components and that the equilibrium ficld component is time dependent when there is spontancous
failure within the medium. It is shown that this temporal variation in the equilibrium ficld, which is duc
to crcation of a failure boundary within an initially stressed medium, gives risc to an "equivalent force"
term in the equations of motion in the linear zone outside the failurc boundary and corresponds to the
inertial effect of changes in the equilibrium displacement field in the medium surrounding the failure
zone. Further, it is shown that this cffect only occurs when the medium is prestressed and a ncw boun-
dary, enclosing a zone of material altered by the failure process, is created. This inertial term, rather than
a term involving the divergence of the stress in the medium, is the proper "equivalent force term” associ-
ated with an earthquake. However, because the process of failure is spontancous and depends on the
dynamic radiation field for its continued growth, the near ficld radiation cffccts arc complicated by energy
absorption and failurc boundary scattering that will also manifest themselves in the total radiation ficld
observed. These latter cffects are dctermined by the boundary conditions, expressing conservation laws,

on the growing failure surface.

In order to treat both the inertial or relaxation cffects in the medium surrounding the failure boun-

dary and the boundary scattering and energy absorption associated with failure growth, it is appropriate to
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rcformulate the representation of the problem as an integral equation involving both the relaxation cffects
and thc boundary interaction effects. A Green’s function integral equation for the displacement in the
lincar region outside the failure zone volume is therefore developed using both the equations of motion
and the boundary conditions on the (growing) failure surface. The resulting integral representation of the
radiation ficld involves a volume integral accounting for the relaxation of the equilibrium field in the elas-
tic medium surrounding the failurc zone (the dominant effect) and surface integral terms that may be indi-
vidually identified as being associatcd with scattering and energy absorption. Further it is shown that this
"represcntation theorem” reduces to the classical result in cases when there is no failure at all, or when the

failure process has stopped.

The integral represcntation obtained is shown to be susceptible to transformation to other forms,
which is useful from a computational point of view as well as being important from a conceptual stand-
point. In particular, it is shown that the integral term representing the relaxation related radiation can be
put in a form idcntical to that obtained in previous work (eg. Archambeau, 1968; Archambeau and Min-
ster, 1978) which used an initial value approach to generate the representation of the radiation ficld.
However, it is found that the surface integral terms representing scattering and absorption at the failure
boundary are more precisely defined by the representation obtained here and have a slightly different
form that represents, at the least, a clarification of the earlier results. Alternately the volume integral
rcpresenting seismic radiation from relaxation in the medium surrounding the failure zone can be
transformed into surface integrals ovcer the failure zone boundary which can be identified as the superposi-
tion (or sum) of a surface distributed dislocation and a distributed stress-pulse involving only the time
dcpendent changes in the equilibrium fields at the boundary. These two cquivalents are not independent
however, since they arc both the result of changes in the equilibrium field from its initial state. (This
latter (icld can be obtaincd by standard methods of solution for inclusion problems). The remaining sur-
face integral terms, involving both the dynamic and cquilibrium field changes, can again be individually

identificd as tcrms representing scatiering and absorption at the failure boundary.
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The integral equation rcpresentations describing the failure induced scismic radiation, whether those
containing a volume rclaxation term explicitly or that representation with this particular term represented
by the dislocation-stress pulse cquivalent, are cxact and applicable to any prestress state and source
geometry. Further, the rupture geometry and growth rate are prescribed in the integral representation

vhen the boundary condition involving encrgy conservation is uscd.

In some cases it is likely that the surface distributed disiocation-stress pulsce cquivalent form will be
more convcnicnt from a computational standpoint, but in any casc the relaxation integral or the equivalent
dislocation-stress pulse integrals can be cvaluated independently from the remainder of the integral cqua-
tion if a failurc zone geometry is assumed, since these integrals depend only on the equilibrium ficld
changes which can be obtained independently through solutions of static inclusion problems. This means
that a moment type expansion can be obtained for the main (relaxation term) contribution to the radiation
ficld by standard mcthods and that corrcctions, or perturbations, to these moment terms can be obtained
by iterative approximation of the scattering-absorption integrals. (These approximations are considcred

in detail in a companion study by Archambeau and Dilts, 1989).

Thus the integral representations obtained here form the basis for a moment-tenscr representation of
carthquake sourcc that is dynamical in nature and satisfics the required conservation laws at the failure
houndary, 2s well as . uw sur ounding lincor zone, Comparing these results with previous representa-
tions of earthquake sources, in particular the "stress drop”, "stress glut", "boundary stress pulse” or "dislo-
cation” representations, leads us to conclude that none of these "models" is generally appropriate,
although the latter two may be adcquate approximations in certain circumstances since they may, for

some failure modes, approximate the appropriate dislocation-stress pulse cquivalent defined here.
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Appendix 1 - Magnitude of Seismic Radiation Effects Due to Induced Gravity Field Changes

In the initial state prior to failurc, mechanical equilibrium requires:
a1 = p; 9,07 (A-1.)

where the gravitational potential ®' (x) and initial density p; (x) satisly

V2P =471 Gp, (A-2a.)

or,

¢®=4n01 P g (A-2b.)

Ix - x|

Here rotational forces for the planctary body are neglected as small relative to gravity.

The final state of the medium will be different after the carthquake but will also satisfy cquilibrium

conditions and (changed) boundary conditions, so that

At = Pr 9 o®

Vidp=4nGpg (A-3.)
and therefore
ak]:‘fxf) - TS)] =pr 4 ® - pr 3y o®
Noting that the left side of this equation involves the stress drop, then
W = 0Ty = pp 9 & - p, 9, 0 (A-4)

where " is the spatial source term used by Gilbert to represent the scismic source "associated” with an

carthquake.

Now setting

] pr=p1+8p
(A-5)

¢l::¢l+6®

so that

V2= V2 + V2 (3D) =41 G (py+ Bp)




then we have immediately:
V2 (80) =41 G (3p) (A-6a.)

Therefore the change in the gravitational potential is given by

so=4xG| —P__ g (A-6b.)
[x-x’}
Further, by the equation of continuity
dp=-V-(ps) (A-7.)

where s denotes the displacement ficld produced by the earthquake.

Inserting (A-5.) in (A-4.), and using (A-6b.) and (A-7.) in the result, gives:

V-(prs)
= -4 v %’
Y= -ancin| [ o
(A-8.)
. P 3,/ . V.(pls) 3.7
+V-(ps)V l x| X[ +V-(ps)V l x—x| d’x

Since we arc interested in the order of magnitude of the source term ¥, then the initial density can be

approximated as a constant, p, in the integrals and in this case (A-8.) has the approximate value:

¥ = —4nGp2{(l+V-s)Vu Vs d3x'J+(V-s)VD: d’x’ U (A-9).

Ix—-x"| lx-xr“

Noting that the divergence of the displacement ficld is the dilatation and that it is small compared to
unity, that is observationally of maximum value ncar 1073 for earthquakes at near distances, then the fac-

tor (1 + V -s) in the first term in (A-9.) can be approximated by unity. Thercfore:

v o 2 V‘S ks . d—3x'_ -
Y=-4xGp {U x—x] dx]+(V s)Vu IX—X'IH (A-10.)

To this point the results are gencral, in that the volume of integration for the gravitational effect can
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be taken as the cntire volume exterior to the failure zone (the volume denoted V, in the text) or the
volume interior to the failure zonc boundary denoted V’ in the text, or both. Gilbert’s representation

involves an intcgration over V, while that of Backus and Mulcahy involves an intcgration over V”.

The representation of the force cquivalent, f, used by Gilbert is given by:
f=YHQU ; reVv,
where H(t) is a step function. The designation of the region of applicability, "¢ V,, means that this
cquivalent is dcfined over the volume exterior to the failure zone. On the other hand, the "stress glut” for-
mation of Backus and Mulcahy has this same form in the low frequency limit, but with the rcgion of

applicability for the equivalent defined to be over V’, the failure zone.

Considering the casc appropriate to Gilberts formulation, for which (A-10.) is dircctly applicable,

and noting that

Yim (8,0) Y1, (8,00 51>1

4 !
1 E[ZHI] [ AT

-x'| 4 lJ . s ,
[x — x| Z{mfl}[wJYm(e,@Yh(e,M;r<r

ILm

where Yy, (8, ¢) = P™(cos 8) ¢™®, with P the associated Legendre function and where Y., is the complex

conjugate of Yy, , then in (A-10.) we have:

. R
3.,
VI dx' =V ﬂt—jr’zdr'+4nJ‘r’dr’ = ~4n/3ré,
g, 1x=xI o r

where ¢, is the unit vector in the radial direction. Here the integration volume V, has been taken to extend
from the origin to a large distance R fiom the failure zone, as required by the finite dimensions of the
planet. Similarly, the integration has been taken through the failure zone in order to give an upper esti-

mate for the size of this term.

Likewisc the magnitude of the other integrals term in (A-10.) can be cstimated by noting that the

dilatation ® = V- s is a harmonic function (eg. Love, 1944). For the rcgion outside the failure zone tiis
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harmonic function is always of the form
1
9=§[F]S"(e’¢) (A-11.)

where

n

S.0.0)=Y [a,,m cosm ¢ + B, sinm ¢] P (cos 6)

m=o

with the constants o, , B, dependent on the failure zone geometry and the initial stress state of the
medium. (Sce Archambcau, 1964 and 1968 for examples.) Thus, with |x - x’| =r*, the second integral
tcrm in (A-10.) can be expressed as:

S.(07.9)

V-s 1, 1
e eex [ [

Ix—x'|
1

} 2 sin 0’ d6’ d¢’ dr’

Now, employing a mecthod due to Love (1944), and applied in similar circumstances by Archambeau
(1968, p. 255) the integration over V; can be rcarranged 10 be performed over surfaces of constant r*
around the "obscrvation point” at r and then (fnally) over r*, to cover all of V,. We therefore obtain,
after extending the region of integration to include the failure zone region as well as the surrounding

medium:

R
. S.(07,
J V-s d""':ZJ%J‘ ( Mda,
1 m o 2+

[x~x'| (!

where R 2 and Q° is the spherical surface of radius r* = [r - r’]. Since

,2[8,,(9 '¢)] . f‘<l'
Sn(el ’¢:) ) lJHI

j n+l a = .

a © 0;r'>r

by an extcnsion of the mean value thcorem for harmonic functions (sec Archambceau, 1964 for details),
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then

r

. . S.(0,
J’ Vs d3x'=4n2 Jr dr* —‘—(rn——?lzhrze

Ix —x'|
Conscquenlly the second term in (A-10.) becomes:

V-s

v A | =2r V(I ®)=2n’ VO +4nr B¢,
¥, Ix—x’|

Now, collecting results from the integral evaluations one has for the cquivalent force in (A-10.):

Y= -8n0p2[4/3reé,+r2ve1 (A-12)

To directly estimate the contribution of such a source term to the wave ficld we observe that the

dynamic displacement ficld, v, is given by:

uk(xvt)z'#J-dlolfl(xo’lo)clk(xrxo;(n' 1) d’x,
0

with f; =¥ (xo) H(t,) and G a tensor Greens function for the medium. Altemnately, the dilatation and rota-
tion of the dynamic field is given, in the spectral domain, by the simpler relations (eg. Archambeau,
1968):

—ik, r 1

l &x

€

io(x,(ﬂ)z 0
T

; f“(g)c"“’"dtoj(vw
0 : - (A-13)

4m pv

P
- 1 -0k 1 C—ik'; 3
x(x,w)= 7 JH@) 7 de | 5 (Vxy) ———d'x,
41|:pv, 2 2 r
)

with infinite space scalar Greens functions used, where ' = | r—v, | and k= /v, k= 0/v,. Here x,
denotes the dilatation while 3 =(x, . X2, X3 denotes the rotation ficld with Cartesian components ;.
These physical potentials should be of the order of the strain changes obscrved from an carthquake if this

source term is the proper equivalent for an carthquake source. These potentials arce therefore convenient
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{or cstimatiion purposcs.

From (A-12.) we have:

a8 1

Vv - 2 2.9 2

Y R2n pG[r8+6r o 39J

v _ 2 2 [VS ] 16n 2 88 1 08 ,
Y= an ' x¢e 3 p°G 69 sin@ da¢ o

where © has the form given in (A-11.). Inscriing these relations along with the expansion for @ into (A-
13.) and introducing the spherical wave the expansions for the scalar Greens functions, of the form

ke -
—=-kY Q21+ D)P(cosP)jkr)h® kr) ;r>r
r 1=0

c

gives:

R
. n-2 -1
1@ 0= 209 550,602 6y | { H ~Gns+ Ly H }J’nﬂw’) g

P

_ 8 pG

29,0 = 3

LI 35,0, ¢>>h,§2’a<,r>j{ } ol ) 0

Here §,(8, ¢) denotes a vector with components of the same type as S.(0,9). In deriving thesc expres-
sions we have cvaluated the transform of the step function H(t) and have used the orthogonality rclation

2r

J. J'P, (cos ) S, (8", ¢")sin® do’ do’ =

with y the angle betwceend the vectors r and ¢’ Again the range of integraton has been extended through

the failurc zone to the origin, in order to obtain maximum estimates.

In cvaluating the radial integrals in the expressions for the wave ficld induced by gravity changes
we can further simplify results and obtain an accurate estimate by taking the upper limit (R) to be very
large, or infinite, and using the integral rclation:

o

-l ,’)Lll g F(l/2v+l/ZB
Jx J, (ax)dx F+v2- )

0




valid for ~Re v<Re [t < 3/2. We have in this case; forn 2 2;

. 2 nk"3 mt(5/6n+ 1/2) k™2
G (¢ @) <2m PG P _ N P {$(0.0)h® (k A-14a.
Xo " {r, @) < v Z 2" ['(n) 2°T'(n+1/2) (00T, ) (A-14a)
- n 8mpG ik
X )s‘—j‘v%‘{:{m $.(6.9) h? (k, 1) (A-14b.)

The magnitude of the dilatation is larger than, but of the same order as, the components of the rota-
tion vector ficld. Thercfore it is sufficient to consider the size of only %%, in (A-14a.), rclative to
obscrved dynamic strain changhes accompanying carthquakes. To obtain a numerical cstimate of ", it
is sufficient to considcr the (extreme) casc in which a fluidized spherical failure volume is produced in an

initially shear stressed medium. In this case we have (Archambeau, 1968; Landau and Lifshitz, 1959) the

specific form for @ in (A-11.):

1

9(r)=r3 S,(0,9)
with
2 4
S,0.6)=3, [az,ncosm¢+[32msinmq>J Py (cos 0)
m=0)
where
_3(1=-20) p3 a .
(az"‘)—u(7—50) R3(0t%0):m=0,1,2
5(1-2 \
B = 275 RICO T ) i m=0.1.2

Here 15” denotes an initial homogeneous shear prestress, R, is the failure zonc radius, o is the Poissons
ratio in the medium and p the rigidity. Thus, for this simplc casc for which wc can cxpect to cbtain the

largest gravity induced radiation cffect associated with failure in a stressed medium:

[ R (1D
-G 5(1-2¢c 0 T 13| | Uiy
w02 .G [L_/_—ggl} [73‘ {2—}% - —9-] t?u—] “h§? (k1) Py(cosB) coso
p ,
265 -




At a frequency of 1Hz and at a distance ¢f about onc wave length ai 1Hz (Je. abuui S kau.) from Uie source

origin, we have:

¥

= (G) 2 5(1-20’) E
el 2

7-50 vp

1
4

Taking a large failure zone such that Ry /v, = 1, so that a distance of one wave length at one hentz is close
to the failure zone boundary, and an initial shear strain such that | t3/2u | = 107, which is typical of the
level producing failure (ie. hundred of bars of shear stress or less), then with o= 1/4 and p~5 gm/cm? as

representative values, we have
-G _
b 19 <107t

wherc this value of | x¢' | has the units and the magnitude of the dynamic strain field, in this casc near the
failure zone boundary. Similarly, the spectral density of the rotation components in (A-14b.) will be such

that
1@t <107
at 1 Hz and at a distance of on¢ wavelength,

The order of magnitude bounds for these quantities, all of which should be of the order of the spec-
tral levels of the dynamic strain changes in the medium if they are to produce the scismic radiation from a
tcctonic source, are clearly many orders of magnitude less than those observed. In particular, we can
expect them to be of about the order of (w™) | t(§/2u | near the failure zone, whick in the present case
implics a Icvel of about 107 at 1 Hz. The values predicted for gravity change induced effects arc there-
forc at least four orders of magnitude too small, as would be expected. The same analysis, when applied
to the effects of gravity changes inside the failurc zone alone such as are implicit in the "stress glut” for-

mulation, produce similar, but ¢ven smaller, effccts.

The origin of the small gravity cffcct is associated with the small value of the "scismo-gravity cou-

pling" factor, K¢ =8r?p?G, appearing in the basic cquivalent force ficld relation of (A-12.). Here,
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G =6.67x107® (cgs units) and so Kg ~ 10™. The coupling factor thercfore scales (down) the dynamic ficld

by about 10~ and produces the small gravity related effects just described.

By way of contrast and in order to show the role of the coupling more precisely, the magnitude of
the scismic radiation due (o stress relaxation around such a spherical failure zone is, to the same approxi-

mation as was used for the gravity cffect calculation (see Archambeau, 1972 for exact results):

3.0
“® (= | 31=20) || Ro || T
o= | 42 (2[5

with similar relations for the rotation ficld components. At 1 Hz and at one wave length from the source

o

5 hi®(k,r) P; (cos 8) cos ¢

origin, we have for the magnitude of the dilatation ficld:

@
T3

,%R)(r w)l - 30-20)] R’
: 2

7-50c vp

When Ry/v, is near unity then this magnitude estimate , at a distance near the failure boundary and for
o= 1/4, is of the order of the prestrain given by | 1{%/2 1 |. Thus, the dilatation at 1 Hz (and likewise the
rotation ficld) is of the order of the prestrain, or of the order 107, if we use the same prestrain level
assumed in the gravity cffect calculation. We also obscrve that this radiation field has the same spatial
dependence and scales with source dimensions, prestrain and medium properties in the same way as the
gravity induced effect, although its frequency dependence is somewhat different. This is as would be
expected since it 12 this direct radiation cffect, associated with the relaxation of the prestress ficld, that
produces the related gravity cffect. However, the ratio of the magnitudes of the two effects is scen 1o be

such that:
) ) 4K
162 1/ 160 | < =107

at 1 Hz and at all spatial locations in the medium. A similar relationship holds at other frequencics as
well, as can be verified. However a demonstration at 1 Hz is sufficient. Thus, the gravity effects arc

clearly negligible compared to direct stress relaxation produced radiation.
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